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The intense vibration that rattles our epoch is nothing more, and nothing less, than the crest of a wave issuing from 
the origin of life, which, moving at first with infinite slowness, now swells and rears. It is thus the whole evolutionary 
dynamic that weighs on the moment now reached in the adventure of living things. Our situation is unique in the an-
nals of life, yet inscribed for all time in the logic of history.—François Meyer (1974, p. 101)1 

The steady state is not a bad place for the theory of growth to start, but may be a dangerous place for it to end.—Rob-
ert Solow (2000, p. 7) 

The analyst should therefore make every effort to frame the forecasting problem so as to facilitate the utilization of all 
the distributional information that is available.—Daniel Kahneman and Amos Tversky (1979, p. 316). 

Introduction 

At least twice in the last 10,000 years, the growth of the human economic system has accelerated mark-

edly—developments that beforehand were hardly foreseen and afterward were called the agricultural and in-

dustrial revolutions. If the growth rate is so changeable over the very long term, the question arises as to 

whether growth might accelerate again, or even decelerate markedly, or reverse. An inside view of the question, 

one built on the specifics of the case (Kahneman and Lovallo 1973, p. 25), is that another step change is not in 

the cards. Even under the high variant of the population projection of the United Nations, global population 

growth will slow from the present 1% per annum to 0.7% by 2100 (UN 2019). Meanwhile, in leading Western 

economies, gross domestic product (GDP) per capita has grown with remarkable steadiness for a long time: in 

the U.S., per-capita growth has averaged 1.7%/year since 1820, a record that could reasonably expected to con-

tinue. Other countries have grown faster, but such rapid expansion looks like transitional catch-up growth; it 

proved so in Japan. These observations combine to suggest that that the global economy will converge in this 

century toward an aggregate growth rate of 2.5%/year or less (e.g., Lucas 2000). 

Yet the human system could diverge from its present momentum for reasons undreamt of in the in-

sider’s philosophy. The most likely causes of large negative shocks are anthropogenic, for they could play out on 

a human rather than geological time scale: climate change, nuclear winter, a bioengineered pandemic (Ord 

2020). Another wild card is the progress of artificial intelligence. Within this century, humans may do for the 

mind what they have already done for muscles and bones by inventing mechanical propulsion. We may devise 

machines that, while they may resemble the human brain no more than a 747 resembles a seagull, will surpass 

the brain in formulating and executing effective plans in complex situations. Like other epoch-making break-

throughs, this one could bring major harm, but also major benefits. It might permanently alter the growth rate of 

the human system (Hanson 2001). 

To shed some additional light on the probability of such divergence, this paper adopts a radically outside 

view, seeking a parsimonious and statistically coherent mathematical model that captures important aspects of 

growth history as embodied in a very long-term series on gross world product (GWP), in order to estimate his-

torical “base rates” or “base distributions” for growth changes. In research on expert judgment, Kahneman and 

 
1 “L’intense vibration qui secoue notre époque n’est rien de plus, mais rien de moins, que le sommet d’une vague issue 
des origines et qui, traînant d’abord infiniment sa lenteur, s’enfle et se cabre. C’est ainsi toute la dynamique évolutive 
qui pèse sur le point aujourd’hui atteint par l’aventure des vivants. Cette situation qui est la nôtre est à la fois unique 
dans les annales de la vie, et cependant inscrite depuis toujours dans la logique de son histoire.” 
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Tversky (1979) found that supplementing inside views with outside ones improves accuracy. The insight has 

spread to project management (Flyvbjerg 2006) and current affairs prediction (Tetlock and Gardner 2015). The 

approach embodies the impregnable Bayesian logic that posterior distributions are most accurate when incor-

porating all available information. But the blending of inside and outside views need not occur formally; often it 

is the informal friction between multiple perspectives that best serves the forecaster and decisionmaker. Thus to 

investigate an outside view of the human trajectory is not to presume that it should dominate other views, only 

that there is a chance of increasing insight into a topic that could hardly be weightier. 

As we look back in time, we quickly lose certainty about how many people lived and how well they lived. 

Nevertheless, GWP has been estimated back to 1 CE (Maddison 2001, 2003) and even to 1 million BCE (De Long 

1998). The estimates contain information. One fact that leaps from the data is that over the very long term, the 

human population and economy have expanded superexponentially. The growth rate has grown. GWP doubled 

between 2000 and 2019; humanity’s earliest doublings perhaps took millennia (mainly through population 

growth). Von Foerster, Mora, and Amiot (1960) first noted that the differential equation , with 𝐵 > 0, 

conforms remarkably well to very-long-term series on the scale of the human system (in their case, population). 

We can rewrite that as ln 𝑦̇ = 𝑠𝑦𝐵, in which ln 𝑦̇  is the growth rate. This functional form succinctly posits an en-

dogenous scale effect in the human enterprise, an elasticity of growth to level. 

Paradoxically, when projected forward, the superexponential equation sends 𝑦 to infinity in finite time. 

That is why Von Foerster, Mora, and Amiot predicted a population “doomsday” for Friday the 13th of November, 

2026. Figure 1 illustrates the paradox with respect to GWP. In the graph, both axes are logarithmic, with time 

measured in years till 2050. On these scales, a line corresponds to a solution of the superexponential equation. 

Here, a line fits GWP well enough that the agricultural and industrial revolutions, the most profound economic 

events since language, shrink to gentle undulations. Yet if the line is extrapolated forward, it never reaches 2050, 

even as it keeps rising. Projected GWP explodes by 2050. 

That outcome seems crazy. It does not follow that the quality of the fit from that simple model and the 

accompanying projection contain no information relevant to the human prospect. This paper therefore works on 

theoretical and statistical foundations for exploring that outside view and quantifying its limitations. Starting 

with theory, the paper makes the point, not novel, that if asymmetries are removed from the neoclassical macro-

economic model, so that all factors are endogenous and none grows at a rate fixed outside the model, then 

steady, positive output growth essentially never occurs. In effect, steady growth only emerges from a neoclassi-

cal-type model when assumed into it. 

The paper’s main technical novelty is designed to improve statistical rigor in fitting a nonlinear dynamic 

stochastic model to data. A univariate stochastic model is introduced that is mathematical kin with the neoclassi-

cal economic model. The statistical version integrates deterministic components of growth—production, rein-

vestment, depreciation—with stochasticity, dynamically incorporated. For intuition, think of the informal equa-

tion ln 𝑦̇ = 𝑠𝑦𝐵 + 𝛿 + 𝜖. The term 𝛿 embodies exogenous depreciation and appreciation. 𝜖 is realized as a ran-

dom, infinitesimal shock in each infinitesimal time step. When articulated in the stochastic calculus, this model 
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casts the observed GWP series as a sample path in a diffusion. One can imagine alternative histories under the 

same probability law, in which, say, an epidemic or climate shock delays the invention of the wheel by a thou-

sand years. Such possibilities shape the probability distribution for GWP at any given time. Typically they fatten 

the upper tail. 

Though novel, this diffusion model is close to and inspired by models in finance, the subfield of econom-

ics that has most exploited the stochastic calculus.2 As a tool for representing growth history, the model pos-

sesses several virtues. Conditional on a starting value, the probability distribution for 𝑦 at any time can be ex-

pressed analytically, which facilitates maximum-likelihood fitting. Because the error process is rigorously de-

fined, not adduced ad hoc as in nonlinear least squares, it grounds inference in a coherent data generating pro-

cess. For example, using GWP figures back to 10,000 BCE, the preferred estimate of the scale effect 𝐵 developed 

here is 0.55, with a standard error of 0.05. 

One attraction of the stochastic model is that it can soften the paradox of infinity in superexponential 

growth, by casting explosion as possible but not inevitable. But that essentially does not happen here. Condition-

ing on the 2019 GWP value, the preferred estimate puts the probability of no eventual explosion at ~10−69. The 

median predicted explosion year is 2047. As noted, the projection of infinity not only collides with the laws of 

physics; it also lies in tension with the relative constancy of per-capita growth over the merely long term. (See 

Figure 2 on U.S. growth.) Perhaps this is an example of an outside view constructively challenging an inside 

view, for arguably the puzzle lies in the second half of that conjunction. Endogenous growth theory easily ex-

plains superexponential growth over the very long term, through the nonrivalry of innovation (Romer 1990; 

Kremer 1993). Increases in all inputs, including technology, bring more than proportional increase in output. 

There is no theory as straightforward for why frontier per-capita growth has been nearly constant in the last 

200 years. For, as noted, constant growth only emerges from neoclassical-style models when injected into them 

by assumption. Jones (2003) sensibly proposes population growth as the most plausible ultimate source of con-

stant exponential growth, with its rooting in biology. Yet in the U.S., long a nation near the economic frontier, 

population growth has declined, from 2.9% per annum in the 1820s to 0.7% in the 2010s (Bolt et al. 2018; UN 

2019). Without so natural a theory for steady growth, it is hard to completely rule that out the possibility that 

the steady growth is a temporary, century-scale deviation from superexponential growth or a transitional step 

to subexponential growth. 

The notion that the growth of the human system has been accelerating may also seem to clash with an 

even more growth-pessimistic line of evidence—evidence that returns to R&D investment have been falling over 

the last century. In the phrasing of Bloom et al. (2020), ideas are getting harder to find. But this contradiction is 

more apparent than real. If conventional inputs to production such as capital and labor together enjoy constant 

returns to scale, then all inputs, including technology, enjoy increasing returns. In the model developed here, 

under plausible parameter choices, the overall increasing returns to scale generate superexponential growth 

even as returns to investment in total factor productivity (TFP) fall. I notionally interpret the scale effect of 0.55 

 
2 But see Nuño and Moll (2018) for an application to macroeconomics. 
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as implying an average returns elasticity of −1.25 for investment in TFP over the last 12,000 years. 

If the superexponential prediction of infinity is not easily refuted by a compelling theory for steady 

growth in the industrial era, nor by signs of declining returns to R&D, what should we make of it? One reading is 

that the extrapolation is directional: output will not go infinite, but may yet greatly increase, the most plausible 

cause being AI. Or the human system could implode, if escalating economic activity undermines an essential in-

put such as natural resources. A reading that embraces both possibilities is that over the long term the world 

system is less stable than traditional growth theory and the last two centuries of growth suggest. 

Section 1 of this paper reviews previous work and elaborates on the motivation for diffusion modeling 

in econometrics. Then, to bridge from familiar theory to the econometrics, section 2 develops a deterministic, 

multi-factor model of growth with Cobb-Douglass production like those in Lee (1988), Kremer (1993), and Jones 

(1995). The section next observes that when explosion or implosion occurs, it does so simultaneously in all fac-

tors, so that the system comes to be well approximated by a collection of univariate differential equations. But in 

the multivariate model, the timing of this denouement is in general intractable. Section 3 proposes representing 

the deterministic but intractable behavior of this multivariate system with a random, univariate, and more trac-

table stochastic differential equation. It introduces the stochastic diffusion. The exposition, mostly deferred to an 

appendix, fills some gaps in existing presentations of the Feller (1951b)/Cox-Ingersoll-Ross (1985; CIR) diffu-

sion. Section 4 constructs data series for population and gross world product since 1 million BCE, as well as for 

gross domestic product (GDP)/capita in France, as a proxy for productivity at the economic frontier. Section 5 

fits the stochastic model to these series and checks for robustness and goodness of fit. Section 6 works to extract 

meaning from the outsider-model’s projection of infinity. Section 7 concludes. 

1 Previous work 

The literature modeling human development over the very long run is rather short. Meyer (1947) is per-

haps the first to identify a “loi d’accélération evolutive” in natural and human history; Meyer’s data from human 

history consist of four dates seen as marking developmental upswings, which themselves arrived accelerando: 

4500 BCE, 550 BCE, 1100 CE, and 1750 CE. Meyer explains the acceleration with a pseudoscientific riff on Hei-

senberg’s uncertainty principle. 

In the fall of 1960, two more firmly grounded articles on the history of human population appeared. In 

Scientific American, Deevey (1960) presents a coarse human population series back to 1 million BCE. Deevey de-

picts the series on log-log scales as in Figure 1, with a rising series of waves for the toolmaking, agricultural, and 

industrial revolutions. The overall linearity on these scales implies a race to infinity somewhere around the pre-

sent. 

In Science, Von Foerster, Mora, and Amiot (1960) more fully surfaces the paradox of infinite extrapola-

tion, providing both a microtheory for and evidence of superexponential growth in human population. The pa-

per begins by considering the differential equation for exponential growth and decay: 

�̇� = 𝑠𝑦. (1) 
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In human populations, the growth rate 𝑠 is determined by the balance between natality and mortality. Von Foer-

ster, Mora, and Amiot observe that in exponential growth, the rate of expansion is not an emergent property (alt-

hough they do not use that term). That is, if two subpopulations grow at rate 𝑠 then their union does too. As a 

consequence, a microtheory for exponential growth of a system need not posit interactions among constituents. 

But a realistic microtheory of growth of the human system does posit interactions. These may be inhibitory, as 

when individuals compete for limited resources, or synergistic, as when innovations are copied. Then, scale mat-

ters for it affects the quantity of such interactions. 

Von Foerster, Mora, and Amiot therefore generalize (1) to what I write as 

�̇� = 𝑠𝑦1+𝐵. (2) 

When 𝐵 ≠ 0, the particular solution is 

𝑦 = (𝑦0
−𝐵 − 𝑠𝐵𝑡)−1/𝐵 , (3) 

in which 𝑡 is time and 𝑦0 is the initial value. If 𝐵 > 0, 𝑦 goes to infinity at time 𝑡𝑐 = 𝑦0
−𝐵 𝑠𝐵⁄ . This tendency be-

comes clearer if we rewrite (3) as 

𝑦 =
1

(𝑠𝐵)1/𝐵(𝑡𝑐 − 𝑡)1/𝐵
 . (4) 

Von Foerster, Mora, and Amiot fit (4) to a 2,000-year-long world population series using least squares—though 

how this nonlinear estimation was carried out in the age of the slide rule is unclear. Most likely 𝑡𝑐 was first esti-

mated somewhat informally, at Friday the 13th of November 2026. Holding 𝑡𝑐 fixed, (4) is log-linear in 𝑡𝑐 − 𝑡, and 

can be fit with ordinary least squares in logarithms. 

More recently, Kapitza (1996), Varfolomeyev and Gurevich (2001), Korotayev (2007), Johansen and Sor-

nette (2001), and Dolgonosov (2016) fit versions of (4) to very long-term series for population or GWP. The last 

two take data from De Long (1998), which is the first paper to venture a GWP series covering a million years. 

Typically in these papers, the differential equation is solved, and the solution is fit to GWP as a function of time. 

The methods are not precisely described and evidently do not produce standard errors. 

Also since 1960, authors have theorized mechanisms that accelerate population and economic growth. 

Kuznets (1960, pp. 328–29) points out that rising population increases the absolute number of “geniuses” whose 

discoveries can benefit all people. Arrow (1962) models learning by doing, in which accumulated gross invest-

ment drives labor productivity. Boserup (1965) focuses on technological change in agriculture induced by in-

creasing population density. In the initial wave of research on endogenous growth, Romer (1986, 1990), Gross-

man and Helpman (1991), and Aghion and Howitt (1992) insert parallel ideas into the neoclassical tradition. 

A related literature models the major economic transitions in history. Most of the papers seek to repro-

duce the industrial revolution with a structure featuring two production regimes, such as agriculture and manu-

facturing or research and final goods. Optimizing agents allocate a resource across these regimes, or else to in-

vestments whose productivity differs between the regimes, such as education of children. The allocations are 
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influenced by, and sometimes influence, an aggregate trend such as productivity growth in manufacturing.3 

Jones (2001) goes farthest in calibrating such a model to historical data, fitting a system that endogenizes tech-

nology and fertility to series for population and GWP/capita starting in 25,000 BCE. The “unified growth theory” 

of Galor and Weil (2000) is perhaps the most comprehensive; its interplay between fertility, education, technol-

ogy, and land can explain the Malthusian era, the industrial revolution, and the demographic transition. The 

models of Becker, Murphy and Tamura (1990) and Acemoglu and Zilibotti (1997) are more unitary, the first em-

phasizing the role of human capital accumulation, the second the difficulty of diversifying away investment risk 

in a pre-industrial economy. Notably, the Becker, Murphy and Tamura system possesses low- and high-income 

equilibria, which gives “luck” a role in the path of history. Lagerlöf (2003a, b) contemplates stochasticity in the 

form of mortality shocks termed “epidemics.” 

Sui generis in the literature is Hanson (2000), which models GWP over 2 million years as the sum of ex-

ponential growth terms with different time constants. The terms help the model match the waves for the 

toolmaking, agricultural, and industrial revolutions in Deevey’s plot. While a sum-of-exponentials state equation 

can be derived from a particular differential equation of motion—a first-order, multivariate, linear homogenous 

system—Hanson (2000) does not invoke this theoretical motivation. The economic model is that the exponen-

tial growth dynamics leading to all the major economic revolutions were present in our ape-like ancestors 2 mil-

lion years ago but took different amounts of time to burst forth to measurable levels. After identifying the pa-

rameters shaping each of these components, Hanson (2000) studies their statistics, notes the tendency for accel-

eration, and projects the timing and magnitude of the next exponential growth mode. Hanson suggests that its 

doubling time will be measured in days. If this reasoning were pursued further, to a cascade of revolutions, a sin-

gularity would occur. In this sense, the Hanson approach, though built on exponential growth, produces superex-

ponential. 

Lee (1988) and Kremer (1993) most influence the modeling done here. Lee (1988) introduces a model 

of long-term human development with one fixed factor, natural resources, and two endogenous factors, popula-

tion and technology. The three combine in Cobb-Douglas production to determine output. Population growth 

rises with output per capita, per the Malthusian theory. But population growth slows with technological ad-

vance, which can explain the worldwide fall in fertility since the 1950s. Meanwhile technology growth is increas-

ing in population, per Kuznets, which allows for an economic takeoff. 

Lee expresses these relationships in an unusual functional form. The dynamical system is 

ln 𝐲̇ = 𝐁 ln 𝐲 + 𝜹, 

where 𝐲 is a 2-vector consisting of population and technology, the natural logarithm is taken elementwise, 𝐁 is 

2 × 2, and 𝜹 is 2 × 1. This is an inhomogeneous linear system in ln 𝐲, whose solution for ln 𝐲 is an affine combina-

tion of exponential growth terms.4 The solutions for 𝐲 are therefore double exponentials, which can grow ever 

 
3 Goodfriend and McDermott (1995), Galor and Weil (2000), Laitner (2000), Fernández-Villaverde (2001), Jones 
(2001), Kögel and Prskawetz (2001), Galor and Moav (2002), Hansen and Prescott (2002), Hazan and Berdugo 
(2002), Tamura (2002), Lagerlöf (2003a, b), Doepke (2004). 
4 If 𝜆1, 𝜆2 are the eigenvalues of 𝐁 and 𝐯1, 𝐯2 are corresponding eigenvectors, we have ln 𝐲 = 𝐯1𝑒

𝜆1𝑡 + 𝐯2𝑒
𝜆2𝑡 − 𝐁−1𝜹. 



7 
  

faster, yet which, in contrast to (4), never reach a singularity. 

Kremer (1993) adopts the model of Lee and then—uniquely in the literature—brings model to data us-

ing econometrics. Focusing on population, Kremer outdoes Von Foerster, Mora, and Amiot (1960) by assembling 

a population series reaching back a million years. The earliest observations come from Deevey (1960). Lacking a 

GWP series of comparable span, Kremer simplifies the theoretical model by (usually) assuming that income per 

person is fixed at a Malthusian equilibrium. A bivariate model for output and population becomes a univariate 

one for population. Kremer also roots the model in the neoclassical tradition, in which a central dynamic is the 

reinvestment of output into factors. Taking production as Cobb-Douglas produces an equation of motion for 

population of the form (2). In this way, the Kremer reformulation of Lee restores the potential for singularity. 

In the econometrics, Kremer’s dependent variable is the compound annual growth rate between obser-

vations of population. Estimation is by nonlinear least squares (NLS) and is from an econometric point of view 

dynamic: the estimator is challenged with explaining each observation conditional on the previous. A finite-dif-

ference analog of the equation of motion (2) is estimated rather than the solution (4). Applied to the population 

series through 1960, the cusp of the global fertility decline, Kremer (1993, Table VI, col. 2) estimates the scale 

effect 𝐵 at 1.22 (standard error 0.112). 

A point of departure for the present paper is the observation that even in the distinctively well-devel-

oped treatment of Kremer (1993), the econometric model is not based on a coherent data generating process 

(DGP). For intuition, note first that essentially all observation spacings in the Kremer data are multiples of five 

years. So we could take a model for the quinquennial DGP as the building block for DGPs for observations of any 

spacing. The five-year DGP corresponding to NLS is 

Δ ln 𝑦𝑡 = 𝑠𝑦𝑡−5
𝐵 + 𝛿 + 𝜖𝑡 

E[𝜖𝑡] = 0 

Var[𝜖𝑡] = 𝜎
2 

(5) 

Given a realization 𝜖𝑡, we have 𝑦𝑡 = 𝑦𝑡−5 + 𝑦𝑡−5 × (𝑠𝑦𝑡−5
𝐵 + 𝛿 + 𝜖𝑡). Substituting the five-year lag of this formula 

into itself gives the implied model for decennially spaced observations. The algebra is complex because it ex-

presses the way a shock in one period folds into subsequent nonlinear dynamics. It produces a random variable 

which, as a model for 10-year growth, differs from the 10-year analog of (5). Error components such 𝜖𝑡 and 𝜖𝑡−5 

are not merely added or averaged. Yet it is the 10-year analog of (5) that NLS brings to decadal observations. It is 

in this sense that NLS is internally inconsistent. 

Note that while for intuition we imagined a data set in which some observations are spaced quinquenni-

ally or decadally, the logic applies even when observations are uniformly spaced. A dynamic NLS econometric 

model does not capture how moment-to-moment stochasticity interacts with nonlinear dynamics to shape the 

error distribution for each observation. Rather, it expediently tacks an i.i.d., finite-variance error onto a deter-

ministic model. A plausible consequence is modeling a fat-tailed process with a thin-tailed DGP. 

The present paper more rigorously addresses the evolution of stochastic, dynamic, nonlinear processes, 

using stochastic differential equations. By passing to the infinitesimal limit in time steps, the stochastic calculus 

produces models that are internally consistent in the sense just mentioned. This should allow for more efficient 
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and consistent estimation of the parameters and provides a sounder basis for inference. It also explicitly intro-

duces a notion of contingency in history, recognizing that many paths are plausible—not just the pristine solu-

tions to a deterministic differential equation. 

2 A deterministic model of long-term development 

As a prelude to the stochastic model, this section presents a deterministic model of economic develop-

ment, following Lee (1988) and Kremer (1993). The section examines the conditions under which the levels and 

growth rates of factors in the system are stable. And it analyzes the limiting behavior when the system diverges. 

This analysis will bring some perspective to the explosive dynamics in human history. And it will help show how 

the mathematical form of the stochastic model is connected to macroeconomic growth theory. 

2.1 A model 

A single, global production process produces output 𝑌 from inputs 𝑦0, … , 𝑦𝑘. The input 𝑦0 is special: it is 

technology—non-rival, imperfectly excludable, highly persistent (Romer 1990). The 𝑘 remaining factors can in-

clude capital, labor, and natural resources. Production is Cobb-Douglas: 

𝑌 =∏𝑦𝑖
𝛼𝑖

𝑘

𝑖=0

. 

The exponents on the conventional factors, 𝛼1, … , 𝛼𝑘, sum to 1, giving constant returns to scale. However, when 

we take a factor such as resources as fixed, we will drop it from the model for simplicity, reducing the formal 

order of homogeneity. Within this structure, technology might be taken as factor-neutral, with 𝛼0 = 1, equating 

it with TFP. Or technology might augment labor alone, in which case the two would carry the same exponent. 

The equations of motion for the factors take a shared form, which captures three influences: reinvest-

ment of output, modulation of this reinvestment by the level of technology, and exogenous depreciation or ap-

preciation: 

�̇�𝑖 = 𝑠𝑖𝑦0
𝜙𝑖𝑌 + 𝛿𝑖𝑦𝑖 . (6) 

For depreciation, 𝛿𝑖 < 0. The investment rates 𝑠𝑖 simultaneously specify the allocation of output and convert 

from its units to the units of the factors. The 𝑦0
𝜙𝑖 term allows the level of technology to influence reinvestment in 

each factor, isoelastically. This term generalizes a structure in Jones (1995) that makes technology modulate the 

productivity of investment in technology only. 𝜙𝑖 can be interpreted as adjusting the quantity or the productivity 

of investment. The latter interpretation staves off violation of the constraint that total reinvestment cannot ex-

ceed output. 

An example motivates the general formulation. Indexing with letters instead of numbers, we set 

𝑌 = 𝐴𝐾𝛼𝐾𝑃𝛼𝑃𝐻𝛼𝐻𝑅1−𝛼𝐾−𝛼𝑃−𝛼𝐻 , (7) 

in which the factors are technology (𝐴, synonymous with 𝑦0), excludable business investment capital (𝐾), popu-

lation (𝑃), human capital (𝐻), and natural resources (𝑅). For now, 𝑅 is fixed at 1, and dropped. We equate popu-

lation with labor force. As in Solow (1957), technology is factor-neutral. 



9 
  

Table 1 displays illustrative parameter choices for this model. I make three comments on the choices. 

First, all factors are endogenous: for all 𝑖, 𝑠𝑖 > 0. This structural symmetry makes sense in the long view, 

since in the long run all inputs are affected by output. The symmetry also undermines many arguments for cast-

ing technology as augmenting a single factor such as labor (Uzawa 1961; Kennedy 1964; Drandakis and Phelps 

1966; Acemoglu 2003).5 Those arguments typically distill to the conclusion that for output growth to be stable, 

technology must augment a stable, exogenously growing input. Here there are no such. This is one reason tech-

nology is factor-neutral in (7). 

Second, as in Lee (1988), the two components in the equation of motion for population can produce a 

Malthusian equilibrium. Holding 𝐴 fixed, investment of economic product in creation and sustenance of life 

(𝑠𝑃𝐴
𝜙𝑃𝑌) can balance the predation of mortality (𝛿𝑃𝑃 with 𝛿𝑃 < 0). However, that dynamic alone cannot explain 

the historically novel drop in worldwide fertility since midcentury.6 Galor (2012) argues that the dominant 

causal channel for the fertility drop has run from improving technology in production to higher demand for hu-

man capital, to a parental investment shift from child quantity to child quality, as contemplated in Barro and 

Becker (1989). The 𝐴𝜙𝑃 factor, with 𝜙𝑃 < 0, expresses a version of this effect, as does the 𝐴𝜙𝐻 factor in the hu-

man capital equation, with 𝜙𝐻 = −𝜙𝑃.7 

The last comment is that the equation of motion for technology resembles the Rivera-Batiz and Romer 

(1991) “lab equipment” specification for innovation, which takes the homogenous output good as the input to 

the production of technological advance. This distinguishes it from another common form, in which a factor 

stock such as 𝑃 or 𝐻 is the input (Romer 1990). If returns to investment of the output good into innovation are 

increasing then 𝜙𝐴 > 0. On the other hand, each advance may make the next harder (Jones 1995). Substituting 

(7) into (6) and specializing the latter to technology, 

�̇� = 𝑠𝐴𝐴
1+𝜙𝐴𝐾𝛼𝐾𝑃𝛼𝑃𝐻𝛼𝐻 + 𝛿𝐴𝐴. (8) 

In simulating growth history since 25,000 BCE, Jones (2001, p. 23) chooses an idea production function similar 

to �̇� = 𝐴1+𝜙𝐴𝑃𝛼𝑃 and takes, in the present notation, 1 + 𝜙𝐴 = 0.5. I therefore choose 𝜙𝐴 = −0.5 for illustration. 

Replicating the substitution in (8) for all factors produces a dynamical system in the four variables 𝐴, 𝐾, 

𝑃, and 𝐻. The system can be restated in the abstractions of linear algebra. Returning to numerical indexes, define 

the column vector 𝐲 = [𝑦i]𝑖=0,..,𝑘 and the vectors 𝐬, 𝜶, 𝜹, and 𝝓 analogously. Denote by ∘ the elementwise product 

of vectors. Define the exponential function of a vector as applying elementwise. More generally, define exponen-

tiation of a column vector by a row vector or matrix via 𝐯𝐔 ≔ 𝑒𝐔ln𝐯. Then the system is 

�̇� = 𝐬 ∘ 𝐲𝐈+𝐁 + 𝜹 ∘ 𝐲. (9) 

With the parameter choices in Table 1, 

 
5 Technology is commonly taken to augment labor alone. By the Uzawa Theorem, if an economy achieves constant, 
growth then technology can only augment exogenous, constantly growing factors. But here we will assume no factors 
are exogenous and as a result the system will not attain constant growth. 
6 Worldwide total fertility fell from 4.97 live births per woman in 1950–55 to 2.47 in 2015–20 (UN 2019, file FERT/4). 
7 However, in the “unified growth theory,” it is the rate of change rather than the level of technology that influences 
education investment (Galor and Weil 2000, Lemma 1). 
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𝐬 = [

0.025
0.25
0.2
0.04

] , 𝜶 = [

1
0.3
0.3
0.3

] , 𝜹 = [

−0.001
−0.03
−0.02
−0.02

] , 𝝓 = [

−0.5
0

−0.1
0.1

] , 𝐈 + 𝐁 = [

1 + 𝜙𝐴 𝛼𝐾 𝛼𝑃 𝛼𝐻
1 + 𝜙𝐾 𝛼𝐾 𝛼𝑃 𝛼𝐻
1 + 𝜙𝑃 𝛼𝐾 𝛼𝑃 𝛼𝐻
1 + 𝜙𝐻 𝛼𝐾 𝛼𝑃 𝛼𝐻

] = [

0.5 0.3 0.3 0.3
1 0.3 0.3 0.3
0.9 0.3 0.3 0.3
1.1 0.3 0.3 0.3

]. (10) 

Output is  

𝑌 = 𝐲𝜶
′
 (11) 

where the prime indicates transposition. We can also write (9) as 

ln 𝐲̇ = 𝐬 ∘ 𝐲𝐁 + 𝜹. (12) 

Formally, 𝐁 is constructed as follows. Let 𝜾 be the (𝑘 + 1)-vector of 1’s; 𝐈 an identity matrix; and ⟦𝝓⟧ the square 

matrix whose entries are 0 except in the 0-indexed column, which holds 𝝓. Then  

𝐁 = 𝜾𝜶′ + ⟦𝝓⟧ − 𝐈 (13) 

The concise statement (12) invites a generalization: 𝐁 could be freed from the single-output assumption 

embedded in (13) and allowed any entries. For example, factors other than technology could modulate fertility. 

Several broad cases then emerge. If 𝐁 = 𝟎, the model is purely exogenous. If some but not all rows of 𝐁 are 0’s, 

the model is partially endogenous: the factors corresponding to the zeroed rows are exogenous. If 𝐁 is irreduci-

ble—if the graph of influences implied by 𝐁 is strongly connected (Meyer 2010, p. 671)—then the system is fully 

endogenous. Every factor affects the growth of every factor, directly or indirectly. 

Even with the single-output restriction (13), the system evidently admits no general closed-form solu-

tion.8 To illustrate potential dynamics, Figure 3 therefore depicts two simulations of (12) with the parameters in 

Table 1. Formally, time is measured in years—the depreciation rates are annual—so the horizontal axis is 

marked in years. The two simulations differ only in their starting point, and only slightly. Since the process we 

seek to model begins in ancient times, it takes population as the initially plentiful factor. It starts at 1 while the 

other inputs start at a shared smaller value. In one scenario this value is 0.03117; in the other, 0.03107. With the 

lower value, depreciation rules the day (or epoch), creating a poverty trap. The higher starting value is chosen, 

at the risk of seeming pretension to realism, so that the system escapes the trap—and then explodes around 

1800. 

The simulations confirm that a multivariate endogenous growth system can maintain something close to 

stasis for a long stretch, then explode. But it is evidently impossible to determine without simulation whether 

and when it will do so from given starting values. We will therefore focus on the equilibrium and disequilibrium 

dynamics of such systems in the next subsections. 

2.2 Equilibria 

We will examine the conditions for existence and stability of equilibria in (12), first in the levels of in-

puts and output, then in their growth rates. 

 
8 If 𝜹 = 𝟎, the system admits a one-parameter subset of solutions in closed form: 𝐲 = 𝐦 (𝑡𝑐 − 𝑡)

𝐤⁄ , in which 𝐤 ≔ 𝚩−1𝜾, 

𝐦 ≔ (𝐤 𝐬⁄ )𝚩
−1

, and in which exponentiation and division of vectors by vectors takes place elementwise. 𝑡𝑐 is the sole 
free parameter, the time of joint explosion or collapse. 
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If one of the factors is exogenous, then it is not very interesting to ask whether the system can achieve 

stasis (zero growth) in all variables. So assume that 𝐬 > 𝟎. And assume that the exponent matrix 𝐁 is invertible. 

Then, setting ln 𝐲̇  to 𝟎 in (12) and solving, the solution to the first-order condition for stasis is 

𝐲∗ = (−𝜹 𝐬⁄ )𝐁
−1
, (14) 

where division of vectors takes place elementwise.9 By (11), output at this point is 𝑌∗ = (−𝜹 𝐬⁄ )𝜶
′𝐁−1 . Applying a 

standard method in the analysis of continuous-time dynamical systems, we check whether at this point of stasis 

the Jacobian of (12) is stable, i.e., whether all its eigenvalues have negative real part. If so, then the equilibrium 

𝐲∗ is asymptotically stable, meaning that the system converges to 𝐲∗ if starting adequately close to it. The Jaco-

bian works out to 

𝜕 ln 𝐲̇

𝜕 ln 𝐲
= 𝐬 ∘ 𝐲𝐁 ∘ 𝐁, (15) 

where the second ∘ operator broadcasts across the columns of 𝐁, applying to each in turn.10 Substituting with 

(14) into (15), 

𝜕 ln 𝐲̇

𝜕 ln 𝐲
= −𝜹 ∘ 𝐁.  

The conditions under which −𝜹 ∘ 𝐁 is stable can be characterized in two ways, one simpler, one more exact. 

The simpler method focuses on the sign of the determinant |𝜹 ∘ 𝐁|. If it is negative then the number of 

eigenvalues of 𝜹 ∘ 𝐁 with negative real part is odd and cannot be 0. Therefore the number of eigenvalues of −𝜹 ∘

𝐁 with positive real part is odd and non-zero, and −𝜹 ∘ 𝐁 is unstable. Thus a sufficient condition for instability is 

0 > |𝜹 ∘ 𝐁| = |diag(−𝜹)||−𝐁|. When 𝜹 < 𝟎—when exogenous influences only cause net depreciation—this con-

dition distills to −|−𝐁| > 0. In the single-output model (13), it works out that −|−𝐁| = 𝜶′𝝓+ (𝜶′𝜾 − 1)(1 − 𝜙𝐴) 

(see appendix A.1). So a sufficient condition for instability is 

𝜶′𝝓 + (1 − 𝜙𝐴)(𝜶
′𝜾 − 1) > 0. (16) 

An intuitive case is when 𝜶(0)
′ 𝜾(0) = 1 and 𝜶(0)

′ 𝝓(0) = 0, where the (0) subscripts indicate deletion of 0-indexed 

entries, thus restriction to conventional factors. That case embraces the Jones (1995) model, in which conven-

tional factors experience constant returns to scale (𝜶(0)
′ 𝜾(0) = 1) and technology is the only input whose rein-

vestment rate varies with the level of technology (𝝓(0) = 𝟎). Then, (16) merely demands 𝛼𝐴 > 0: if the marginal 

product of technology is positive, which it effectively is by definition, stasis is unstable. 

That intuitive case does not quite embrace the example simulated earlier, which has 𝜶(0)
′ 𝜾(0) = 0.9 ra-

ther than 1, the difference owing to the dropped static factor, natural resources. (The simulated example does 

satisfy 𝜶(0)
′ 𝝓(0) = 0 because 𝜙𝐾 = 0, 𝜙𝑃 = −𝜙𝐻, and 𝛼𝑃 = 𝛼𝐻.) But this opening for stability is narrow: (16) still 

 
9 If an entry of 𝐬 is 0, then the corresponding (exogenous) factor cannot experience zero growth unless its entry in δ is 
also 0, in which case growth in (12) is always zero and the corresponding entry of 𝐲 is not identified by the first-order 
condition. 
10 Equivalently, 𝜕 ln 𝐲̇ 𝜕 ln 𝐲⁄ = diag(𝐬) diag(𝐲𝐁) 𝐁. 
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holds as long as 𝜙𝐴 > −9.11 Even the cautionary assessment of Bloom et al. (2020) of the current marginal 

productivity of R&D does not point to such a low value. Their methods using aggregate data for the U.S. in 1930–

2015 suggest 𝜙𝐴 ≈ −3.12 

The more precise statement of the conditions for stability develops the characteristic equation of −𝜹 ∘ 𝐁 

and reiterates that the solutions must have negative real part. Notice that we can rewrite (16), which originates 

in |𝜹 ∘ 𝐁| < 0, in a certain way. Express the intended rewriting as 

|𝜹 ∘ 𝐁| < 0 𝜶′ (𝜾 +
𝝓

1 − 𝜙𝐴
) > 1. (17) 

(This assumes 𝜙𝐴 < 1.) A parallel statement applies to the characteristic equation: 

|−𝜹 ∘ 𝐁 − 𝜆𝐈| = 0 (
𝜶

𝜾 +
𝜆
−𝜹

)

′

(𝜾 +
𝝓

1 +
𝜆
−𝛿𝐴

−𝜙𝐴

) = 1. (18) 

in which 𝜆 −𝜹⁄ ≔ 𝜆𝜾 −𝜹⁄ . (See appendix A.3, which also discusses some degenerate exceptions.) Plugging 𝜆 = 0 

into the left of the second equation in (18) yields the corresponding expression in (17)—which we have just 

seen exceeds 1 under plausible parameter choices. By examination, decreasing the complex expression in (18) to 

achieve equality requires driving 𝜆 in a positive direction; and a positive 𝜆 indicates an unstable Jacobian. In par-

ticular, a root 𝜆 must shift more in the destabilizing, positive direction the more that technological advance stim-

ulates further advance (𝜙𝐴 is higher) or stimulates other factors (the other elements of 𝝓 are higher). Positive 

stimulus to factors from technology destabilizes stasis even more. 

In sum, in the fully endogenous model, stasis is unstable under reasonable parameter choices. 

There might be greater hope for stable growth in an endogenous system. Defining 𝐳 = ln 𝐲̇ , we can de-

rive a  direct equation of motion for 𝐳 by differentiating (12) with respect to time. It works out that 

�̇� = (𝐳 − 𝜹) ∘ 𝐁𝐳. (19) 

This allows us to view the system as one in which growth rates are the state variables, and to analyze steady 

states in the same way as before.13,14 The corresponding Jacobian is 

𝜕�̇�

𝜕𝐳
= (𝐳 − 𝜹) ∘ 𝐁 + diag(𝐁𝐳). (20) 

Suppose 𝐳∗ is a root of the right side of (19), a self-perpetuating vector of input growth rates. If all inputs receive 

 
11 In the example developed in section 2.1, 𝐈 − 𝜹 ∘ 𝐁 is positive, so the Perron-Frobenius theorem pertains. The posi-
tive eigenvalue of −𝜹 ∘ 𝐁 is 1 less than the Perron root of 𝐈 − 𝜹 ∘ 𝐁 and the associated eigenvector is the (positive) Per-
ron vector of 𝐈 − 𝜹 ∘ 𝐁. Rather balanced growth or shrinkage in all factors constitutes the most purely destabilizing 
direction away from stasis. 
12 Bloom et al. (2020, Table 7, row 1) estimates a parameter 𝛽 at 3.1, which corresponds to a value of −2.1 for the 𝜙 of 
Jones (1995) (Bloom et al. 2020, note 25). However, those papers conceive of labor as the input to the production of 
ideas, rather than the money-denominated reinvestment flow 𝑠𝐴𝑌 as here. Bloom et al. thus deflates that flow by an 
index of high-skill wages in order to arrive at a measure of research effort. To modify the Bloom et al. calculations to 
the “lab equipment” specification used here, in which the research input is 𝑠𝐴𝑌, we deflate instead by the consumer 
price index. The estimates become 𝛽 = 4.0 and 𝜙𝐴 = −3.0. See this paper’s code archive. 
13 One cannot move so neatly to growth space under the more general constant-elasticity-of-substitution production. 
14 As long as 𝐳 ≥ 𝜹, it is an attainable growth state, in the sense that there is a vector of positive factor levels 𝐲 at which 

the system grows at 𝐳. In particular, solving for 𝐲 in (12) gives 𝐲 = ((𝐳 − 𝜹) 𝐬⁄ )𝐁
−1

. 
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some reinvestment, so that none is purely exogenous, then when 𝐳 = 𝐳∗, the first factor on the right of (19) is 

entirely non-zero. Then, for constant growth (�̇� = 𝟎), the second term, 𝐁𝐳∗, must be 𝟎. If 𝐁 has full rank then 

𝐳∗ = 𝟎—which returns us to the analysis of stasis just above. And in the single-output economy (13), for 𝐁 to be 

rank-deficient, |𝐁| = 0, and equality rather than inequality must hold in (16), which was just cast as unrealistic. 

Turning that reasoning around, if none of the elements of 𝜹 is positive (exogenous factors are net-depre-

ciative) and if 𝐁 has full rank, then constant, positive growth is in general impossible in the model (12). Typical 

behavior, rather, is for factor growth rates to converge to their respective depreciation rates or diverge to posi-

tive infinity. 

The prospect for stable growth brightens in the partially endogenous model. This is especially the case if 

technology is exogenous. So suppose there is at least one exogenous factor in the model. Use 𝑒𝑥 and 𝑒𝑛 sub-

scripts to denote the parts of the various vectors and matrices corresponding to exogenous and endogenous fac-

tors. For the exogenous factors, 𝐳𝑒𝑥 = 𝜹𝑒𝑥 and the corresponding rows of 𝐁 may be taken as 𝟎. As for the endoge-

nous factors, since the entries of 𝐳𝑒𝑛 − 𝜹𝑒𝑛 are non-zero, for (19) to be 𝟎 still requires 

𝟎 = (𝐁𝐳∗)𝑒𝑛 = 𝐁𝑒𝑛,𝑒𝑛𝐳𝑒𝑛
∗ + 𝐁𝑒𝑛,𝑒𝑥𝐳𝑒𝑥

∗ = 𝐁𝑒𝑛,𝑒𝑛𝐳𝑒𝑛
∗ + 𝐁𝑒𝑛,𝑒𝑥𝜹𝑒𝑥. 

Then, assuming 𝐁𝑒𝑛,𝑒𝑛 is invertible, solving for 𝐳𝑒𝑛
∗  gives the steady-state growth rates for endogenous factors: 

𝐳𝑒𝑛
∗ = −𝐁𝑒𝑛,𝑒𝑛

−1 𝐁𝑒𝑛,𝑒𝑥𝜹𝑒𝑥.  

The equilibrium output growth rate is 

𝑍∗ = 𝜶𝑒𝑛
′ 𝐳𝑒𝑛

∗ + 𝜶𝑒𝑥
′ 𝐳𝑒𝑥

∗ = (𝜶𝑒𝑥
′ − 𝜶𝑒𝑛

′ 𝐁𝑒𝑛,𝑒𝑛
−1 𝐁𝑒𝑛,𝑒𝑥)𝜹𝑒𝑥 . 

As in the neoclassical model, the growth rates of exogenous factors (𝜹𝑒𝑥) operate as multipliers in the equilib-

rium output growth rate. To investigate stability here, we plug the formulas for 𝐳𝑒𝑥
∗  and 𝐳𝑒𝑛

∗  into the Jacobian 

(20), and check its eigenvalues. We get: 

𝜕�̇�

𝜕𝐳
= [

(𝐳𝑒𝑛
∗ − 𝜹𝑒𝑛) ∘ 𝐁𝑒𝑛,𝑒𝑛 (𝐳𝑒𝑛

∗ − 𝜹𝑒𝑛) ∘ 𝐁𝑒𝑛,𝑒𝑥
𝟎 𝟎

].  

The non-zero eigenvalues, corresponding to endogenous factors, are those of the upper-left block. 

The earlier results on the stability of −𝜹 ∘ 𝐁, the Jacobian at stasis, transfer by analogy to (𝐳𝑒𝑛
∗ − 𝜹𝑒𝑛) ∘

𝐁𝑒𝑛,𝑒𝑛. Before we assumed that the first factor in −𝜹 ∘ 𝐁, namely −𝜹, was positive. Now we have assumed the 

same for the first factor of (𝐳𝑒𝑛
∗ − 𝜹𝑒𝑛) ∘ 𝐁𝑒𝑛,𝑒𝑛. Replacing −𝜹 with 𝐳𝑒𝑛

∗ − 𝜹𝑒𝑛, (17) and (18) transmogrify to  

|(𝐳𝑒𝑛
∗ − 𝜹𝑒𝑛) ∘ 𝐁𝑒𝑛,𝑒𝑛| < 0 ⇒ 𝜶𝑒𝑛

′ (𝜾𝑒𝑛 +
𝝓𝑒𝑛
1 − 𝜙𝐴

) > 1, (21) 

|(𝐳𝑒𝑛
∗ − 𝜹𝑒𝑛) ∘ 𝐁𝑒𝑛,𝑒𝑛 − 𝜆𝐈𝑒𝑛| = 0 ⇒ (

𝜶𝑒𝑛

𝜾𝑒𝑛 +
𝜆

𝐳𝑒𝑛∗ − 𝜹𝑒𝑛

)

′

(𝜾𝑒𝑛 +
𝝓𝑒𝑛

1 +
𝜆

𝑧𝐴
∗ − 𝛿𝐴

− 𝜙𝐴

) = 1. (22) 

These two conditions—one simpler, one exact—speak to the stability of growth in the partially endogenous sys-

tem. In fact, they create room for stable, constant, positive growth. If we imagine that, 𝜶𝑒𝑛
′ 𝜾𝑒𝑛, the endogenous 

contribution to production, falls, then 𝜶𝑒𝑛
′ 𝝓𝑒𝑛 will tend too as well, reducing the likelihood that the sufficient 

condition for instability of equilibrium growth (21) will be satisfied. By the same reasoning as after (18), this 

will also make it more plausible for eigenvalue solutions in (22) to have negative real part. The scope for 
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stability is especially great if technology is exogenous, for then 𝝓 does not figure in the construction of 𝐁𝑒𝑛,𝑒𝑛, 

and we take 𝜙𝐴 = 0 and 𝝓𝑒𝑛  = 𝟎 in (21) and (22). Then (21) is simply 𝜶𝑒𝑛
′ 𝜾𝑒𝑛 > 1, which we assume is impossi-

ble, since technology is not among the endogenous inputs and the remaining inputs have at most constant re-

turns to scale. More generally, the left side of the inequalities in (17) and (21) emerges as the degree of endoge-

nous scale effect; when this exceeds 1, the system contains explosive propensity. Meanwhile, Appendix A.4 shows 

that in the partially endogenous case, it is precisely when (21) does not hold that the equilibrium growth rate 𝑍∗ 

is, under reasonable assumptions, positive. 

This exploration of stability in a mathematical family embracing the Solow-Swan model with Cobb-

Douglas production illustrates a few points. First, within this larger family, instability is the rule, in both levels 

and growth rates. From this standpoint, two features of the Solow-Swan model nevertheless assure convergence 

toward constant, positive growth: the presence of exogenous factors, and the assumption that these factors grow 

at constant rate. In effect, constant growth is assumed into the Solow-Swan model and rather than emerging 

from it (Jones 2003). 

2.3 Disequilibria 

As a fully endogenous system approaches a singularity in one variable, that development will drive all 

other variables to diverge at the same moment, or to collapse to the pure-depreciation path. For once one entry 

of 𝐲 goes to zero or infinity, all entries of 𝐲𝐁(= 𝑒𝐁 ln𝐲) in the equation of motion (12) must do so. Typically, the 

path of each diverging variable will be increasingly well approximated by a univariate model, in which deprecia-

tion loses relevance and the acceleration of growth becomes dominated by the largest (or only) positive eigen-

value of 𝐁. And as shown in the discussion after (16), an endogenous system with the single-output structure 

(13) has a positive eigenvalue under a broad range of reasonable parameter values. 

For a more precise statement and demonstration of these assertions, let {𝜆𝑖}𝑖=0,…,𝑘 be the eigenvalues of 

𝐁, indexed from highest to lowest real part, and {𝐯𝑖} a corresponding eigenvector basis. Assume 𝜆0 is real. This is 

the case, for example, in the single-output system under instability condition (16). For then, appendix A.2 shows, 

the eigenvalues of 𝐁 are −1, with multiplicity 𝑘 − 1, along with 

𝜆± ≔ 𝜙𝐴 − 1 +
𝜶′𝜾 − 𝜙𝐴

2
± √(

𝜶′𝜾 − 𝜙𝐴
2

)
2

+ 𝜶′𝝓 . (23) 

Condition (16) works out to be equivalent to 𝜆− < 0 and 𝜆+ > 0, so under assertedly plausible parameter values 

that satisfy (16), 𝜆+ is the sole positive eigenvalue. 

Write 

ln 𝐲 =∑𝑐𝑖𝐯𝑖
𝑖

 (24) 

for some coefficients 𝑐𝑖 . Substituting that into equation of motion (12), assuming that the potentially superexpo-

nential growth term 𝐲B is large enough to justify dropping the depreciation term 𝜹, and taking the logarithm of 

both sides, 
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ln ln 𝐲̇ ≈ ln (𝐬 ∘ (𝑒∑𝑐𝑖𝐯𝑖)
𝐁
) = ln(𝐬 ∘ 𝑒𝐁∑𝑐𝑖𝐯𝑖) = ln 𝐬 +∑𝜆𝑖𝑐𝑖𝐯𝑖 . (25) 

In the c0 → ∞ limit, assuming 𝐬 > 𝟎, the elementwise ratio of (25) to (24) is 𝜆0𝜾. Thus as the eigenvector with the 

greatest eigenvalue comes to dominate the composition of ln 𝐲, 

ln ln 𝐲̇ ≈ 𝜆0 ln 𝐲. (26) 

Exponentiating both sides of that approximation, 

ln 𝐲̇ ≈ 𝐲𝜆0 . 

This is a special case of the general system (12), with a scalar matrix replacing 𝐁; and it is in this sense 

that as the system approaches a singularity, it approximates a collection of univariate systems with shared scal-

ing factor 𝜆0.  

Partly on the basis of the observation that a diverging multivariate system approaches a set of univariate 

systems with a shared scaling rate, we will turn in the next section to a univariate model for GWP. The matrix 𝐁 

will become the scalar 𝐵. If we take the univariate empirical model as a reduction of a multivariate theoretical 

model that is more realistic but too complex to identify, the discussion above motivates viewing the estimated 𝐵 

as the largest eigenvalue of an otherwise unknown 𝐁. Equation (23) suggests one way to interpret estimates of 

𝐵. If we revert to the “intuitive example” in the previous subsection, in which 𝜶(0)
′ 𝜾(0) = 1 and 𝜶(0)

′ 𝝓(0) = 0, and 

if we continue to assume 𝛼𝐴 = 1, so that technology is TFP, then the largest eigenvalue is 

𝐵 ≈ 𝜆+ =
𝜙𝐴
2
+√1 +

𝜙𝐴
2

4
. 

Solving for 𝜙𝐴, 

𝜙𝐴 ≈ 𝐵 −
1

𝐵
. (27) 

This equation will link univariate estimation results to the returns elasticity for investment in TFP in a multifac-

tor context. Finding 𝐵 < 1 will suggest that returns to investment in innovation are diminishing. 

3 Stochastic modeling 

The models contemplated in the previous section are deterministic: parameter values and initial condi-

tions exactly govern the path of the system for its lifetime. This section introduces stochasticity. The resulting 

model dynamically incorporates shocks while still allowing a superexponential component of growth and a com-

ponent of constant appreciation or depreciation. This allows for different outcomes to result from the same 

starting point and produces fat-tailed distributions at each time point. Yet the distributions can be stated analyt-

ically, which facilitates fitting to data. 

3.1 A univariate stochastic model 

The stochastic model developed here is chosen to be univariate, for tractability. In addition, the previous 

section produced a broader rationale: as multivariate systems explode, they converge to collections of univariate 

systems. In a deterministic multivariate model, the timing of any takeoff depends on the starting values and 
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exact dynamics in a way that is complex and hard to analyze. In a discrete-time variant, the dynamics might be 

chaotic: deterministic yet sensitive to parameters or starting values, with a fractal boundary between parameter 

regions leading to qualitatively different outcomes. A stochastic model can capture some of the character of an 

analytically intractable, determinate process with a more tractable, less determinate process. 

We start with the univariate subcase of the multivariate system (9): 

𝑑𝑦 = (𝑠𝑦1+𝐵 + 𝛿𝑦)𝑑𝑡. (28) 

When 𝐵, 𝛿 ≠ 0, this equation is solved by a change of variables, 𝑦 ≔ 𝑥−1 𝐵⁄ . That produces 

𝑑𝑥 = (−𝛿𝐵𝑥 − 𝐵𝑠)𝑑𝑡, (29) 

whose particular solution is 

𝑥 = (𝑥0 −
𝑠

−𝛿
) 𝑒−𝛿𝐵𝑡 +

𝑠

−𝛿
, (30) 

where 𝑥0 is the value at 𝑡 = 0. The solution for 𝑦 follows directly. Notice that if there is depreciation (𝛿 < 0) but 

also explosive propensity (𝐵 > 0), 𝑥 grows exponentially away from 𝑠 (−𝛿)⁄ —whether upward or downward 

depending on which side of that value 𝑥 starts on. If downward, then 𝑥 reaches 0 in finite time. It follows that 

𝑦 = 𝑥−1 𝐵⁄  decays over infinite time or explodes in finite time depending on whether 𝑦 starts above or below 

(−𝛿 𝑠⁄ )1 𝐵⁄ . In Figure 3, the multivariate system exhibited a similar bifurcation. 

The stochastic model adds to (28) a random term with a particular form: 

𝑑𝑌𝑡 = (𝑠𝑌𝑡
1+𝐵 + 𝛿𝑌𝑡)𝑑𝑡 + 𝜎√𝑌𝑡𝑌𝑡

1+𝐵𝑑𝑊𝑡. (31) 

Following typographic convention in the literature on stochastic differential equations (SDEs), I have replaced 

the deterministic 𝑦 with the random 𝑌𝑡. The two familiar terms in the multiplier on 𝑑𝑡 constitute the drift coeffi-

cient. The novel 𝑑𝑊𝑡 represents the progression of a Weiner process, whose sample paths are continuous ran-

dom walks with fractal complexity, and whose cumulative variance at time 𝑡 equals 𝑡. For reasons soon to be 

stated, the multiplier on 𝑑𝑊𝑡, the diffusion coefficient, is chosen to be proportional to the geometric mean of the 

two drift components. Together, these definitions make 𝑌𝑡 a random variable whose distribution at each time 𝑡 is 

determined by 𝑌0 as well as 𝑠, 𝐵, 𝛿, and 𝜎. As a shorthand, I will call (31) the “superexponential” diffusion even 

though it is also capable of exponential and subexponential evolution if 𝐵 = 0 or 𝐵 < 0. 

The mathematical construct of the Weiner process, represented by 𝑑𝑊𝑡, is the heart of the stochastic 

differential equation. It is what allows the data generating process across a microsecond, if compounded enough, 

to equal that across a millennium. It addresses the methodological concern emphasized in section 1. 

Stochasticity induces a distinction between distribution and instance. We can imagine an infinite num-

ber of “rollouts” of world history all beginning at the same GWP level in 10,000 BCE, and all evolving according 

to (31) with the same parameters. In one, the wheel is invented a thousand years early; in another, it is never 

invented. Yet the distribution for GWP at each moment evolves deterministically. 

The diffusion coefficient in (31), 𝜎√𝑌𝑡𝑌𝑡
1+𝐵, governs how the variance of the stochastic component 

grows with 𝑌𝑡; it is chosen for tractability more than realism. For with this specification, assuming 𝐵 ≠ 0, the 
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SDE remains solvable via the change of variables used to solve (28): 

𝑌𝑡 ≔ 𝑋𝑡
−1 𝐵⁄

. (32) 

To see this, define, as the inverse of that transformation, 𝑓(𝑌𝑡) ≔ 𝑌𝑡
−𝐵. Itô’s stochastic calculus dictates how in-

crements of the randomly evolving variable 𝑋𝑡 depend on those of 𝑌𝑡 (Oksendal 2014): 

𝑑𝑋𝑡 = 𝑓
′(𝑌𝑡)𝑑𝑌𝑡 +

1

2
𝑓′′(𝑌𝑡)𝑑𝑌𝑡

2, (33) 

where 𝑑𝑌𝑡
2 represents an infinitesimal increment of the quadratic variation of 𝑌𝑡.15 Since in the Itô calculus 𝑑𝑊𝑡 ⋅

𝑑𝑊𝑡 = 𝑑𝑡 and 𝑑𝑡 ⋅ 𝑑𝑡 = 𝑑𝑡 ⋅ 𝑑𝑊𝑡 = 0, substituting (31) into (33) results in 

𝑑𝑋𝑡 = (−𝛿𝐵𝑋𝑡 − 𝐵𝑠 +
𝜎2

2
𝐵(𝐵 + 1))𝑑𝑡 + 𝜎𝐵√𝑋𝑡𝑑𝑊𝑡 . (34) 

Collecting the constant terms with 

𝑎 ≔
𝜎2𝐵2

2
, 𝑏 ≔ −𝐵𝛿, 𝑐 ≔ −𝐵𝑠 +

𝜎2𝐵(𝐵 + 1)

2
 (35) 

gives 

𝑑𝑋𝑡 = (𝑏𝑋𝑡 + 𝑐)𝑑𝑡 + √2𝑎𝑋𝑡𝑑𝑊𝑡. (36) 

This SDE stochastically extends (29). It corresponds to the Feller (1951b) diffusion, and is applied in finance as 

the Cox-Ingersoll-Ross (CIR; 1985) model, though CIR impose 𝑏 < 0 and 𝑐 > 0. The distribution of 𝑋𝑡|𝑋0, or solu-

tion, admits an analytical form, something most SDEs do not.16 

Cox (1996 [1975]) first proposed extending a CIR-type model via a power transform like (32).17 How-

ever, Cox then imposes 𝑠 = 0, in the above parameterization. This produces the Constant Elasticity of Variance 

(CEV) model in his context and a purely exogenous growth system in ours. Cox further requires −2 ≤ 𝐵 < 0. The 

diffusion (31) embraces the CEV as a special case, along with one-dimensional Brownian motion, the Bessel pro-

cess, the squared Bessel, and, in a limit, geometric Brownian motion. Figure 15 in appendix B.3 shows how these 

and other common models are connected through parameter restrictions and the power transform. 

As a model for very long-term economic series, the superexponential diffusion has virtues and draw-

backs. The analytical formulas for the solutions obviate the need for Monte Carlo simulation during maximum 

likelihood estimation (on the complexities of which, see Hurn, Jeisman, and Lindsay 2007). In addition, its con-

nection to the Feller/CIR assures existence and uniqueness of continuous sample paths in a context in which 

general theory does not assure such (Cox and Ross 1976, note 6). An SDE capable of superexponential growth 

will typically contain a super-linear drift component such as 𝑌𝑡
2𝑑𝑡 (appearing in (31) when 𝐵 = 1). This term is 

not Lipschitz continuous over the positive reals: there is no global upper bound on the magnitude of its slope 

with respect to 𝑌𝑡. Yet Lipschitz continuity is assumed in standard proofs of existence and uniqueness of SDE 

 
15 We use the Itô interpretation of stochastic differential equations, according to which each infinitesimal innovation 
𝑑𝑊𝑡  is independent of all developments up to time 𝑡. 
16 The solutions are solutions of the Kolmogorov forward/Feynman-Kac equation discussed in appendix B. 
17 As CIR (1976, note 6) observes, Feller (1967, pp. 325–26) earlier pointed out the general principle that one stochas-
tic process with a known generator can be constructed from another via a monotone transformation. 
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solutions (e.g., Oksendal 2014, Theorem 5.2.1).18 It is therefore not certain that an arbitrary SDE 𝑑𝑌𝑡 = 𝑏(𝑌𝑡)𝑑𝑡 +

𝜎(𝑌𝑡)𝑑𝑊𝑡, with 𝑏(⋅) super-linear, has (unique) solutions with continuous sample paths. But in the present case, 

since sample paths for 𝑋𝑡 are known to be continuous, the same holds for 𝑌𝑡 = 𝑋𝑡
−1 𝐵⁄

. 

The price of that assurance is that the “superexponential” model (31) fixes the functional form for the 

diffusion coefficient in relation to the drift coefficient, as the parameter 𝐵 enters both. Any departure from that 

restriction would make it impossible to reach the Feller/CIR in (34). This inflexibility may cause model fits to 

misestimate the stochasticity in economic history. 

Another drawback lies in the univariate character of the model. For millennia, income per person en-

joyed little clear trend. The obvious explanation for this stability, the Malthusian model, requires two interacting 

factors. A univariate model may fail to reproduce both the long stretch of relative stasis and the recent centuries 

of takeoff. 

3.2 Transition densities and sample paths under the Feller/CIR diffusion 

Feller (1951b) first studied the solutions to (36)—in particular how they are shaped by conditions on 

the behavior of sample paths at the 𝑋𝑡 = 0 boundary. Despite that work and the popularization of the Feller dif-

fusion through CIR (1985), I have found no unified treatment of the solutions and the corresponding boundary 

conditions. There are two standard solutions; but like Clark Kent and Superman, they never appear in the same 

place at the same time, which gives our knowledge of them a folkloric quality. Here I will only state the two com-

mon solutions, leaving their demonstration to appendix B. These statements then transfer to 𝑌𝑡, the potentially 

superexponential variable, via the power transform. 

We first define two families of probability densities, which will form the basis of distributions for 𝑋𝑡|𝑋0 

at each time 𝑡. Let 𝑓Γ(𝑧; 𝛼) = 𝑒
−𝑧𝑧−𝛼−1 Γ(𝛼)⁄  be the standard gamma density. Then the noncentral 𝜒2 density is 

𝑓𝜒2(𝑥; 𝜆, 𝜈) ≔ ∑ 𝑓Γ(𝜆;𝑚 + 1)𝑓Γ(𝑥;𝑚 + 𝜈 + 1)

∞

𝑚=0

 (37) 

And what I call the Feller density is 

𝑓−𝜒2(𝑥; 𝜆, 𝜈) ≔ ∑ 𝑓Γ(𝜆;𝑚 − 𝜈 + 1)𝑓Γ(𝑥;𝑚 + 1)

∞

𝑚=0

. (38) 

𝜆 is a location parameter and 𝜈 a shape parameter. Write 𝑓±𝜒2  for 𝑓𝜒2  and 𝑓−𝜒2 as a pair. Figure 4 plots the two 

for 𝜆 = 1 and 𝜈 = −3.0,−2.5,… , +3.0. For each value of 𝜈, 𝑓𝜒2  and 𝑓−𝜒2 are the same color in the figure; 𝑓𝜒2  is 

dotted while 𝑓−𝜒2 is solid. When 𝜈 is an integer, the two coincide. Otherwise, the two fork toward the left; in 

some cases 𝑓𝜒2  goes to infinity. 

To fashion these densities into time-indexed diffusion solutions, we set their inputs to depend on the 

 
18 In fact, (36) is not Lipschitz either, since √2𝑎𝑋 has unbounded slope as 𝑋 → 0. Nevertheless, theory assures exist-
ence and uniqueness of solutions (Yamada and Watanabe 1971). Alternatively, one can observe that for 𝐵 = 1, the 
terms of (31) are locally Lipschitz, which assures existence and uniqueness until an explosion time (Van Handel 2007, 
Theorem 5.6.2). Again, the result for the Feller/CIR variable 𝑋𝑡  bootstraps to 𝑌𝑡 . 
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Feller/CIR parameters 𝑎, 𝑏, and 𝑐, the initial value 𝑋0, and 𝑡. Specifically, we plug into (37) and (38) with 

𝑍𝑡 ≔
𝑒−𝑏𝑡

𝑎
𝑋𝑡 

�̃� ≔ ∫ 𝑒−𝑏𝑠𝑑𝑠
𝑡

0

= {
(1 − 𝑒−𝑏𝑡) 𝑏⁄ if 𝑏 ≠ 0

𝑡 if 𝑏 = 0
 

𝑍�̃� ≔ 𝑍𝑡 ,  �̃� ≔ 𝑐 𝑎⁄  

𝑥 ≔ 𝑍�̃� �̃�⁄ ,  𝜆 ≔ 𝑍0 �̃�⁄ ,  𝜈 ≔ �̃� − 1 

(39) 

After multiplying by the Jacobians of the changes in variables from 𝑋𝑡 to 𝑍𝑡 to 𝑥, the densities for 𝑋𝑡|𝑋0 are 

𝑓±𝜒2
∗ (𝑋𝑡; 𝑋0, 𝑡, 𝑎, 𝑏, 𝑐) ≔

𝑒−𝑏𝑡

𝑎�̃�
𝑓±𝜒2 (

𝑍�̃�
�̃�
;
𝑍0
�̃�
, �̃� − 1). (40) 

To translate these solutions for the Feller/CIR into ones for the superexponential, we transform lastly with 𝑌𝑡 =

𝑋𝑡
−1/𝐵

 and multiply once more by a corresponding Jacobian: 

𝑓±𝜒2
∗𝐵 (𝑌𝑡; 𝑌0, 𝑡, 𝑠, 𝐵, 𝛿, 𝜎) ≔

𝑒−𝑏𝑡|𝐵|𝑌𝑡
−𝐵−1

𝑎�̃�
𝑓±𝜒2 (

�̃��̃�
�̃�
;
𝑍0
�̃�
, �̃� − 1). (41) 

But for the moment, we focus on 𝑓±𝜒2
∗ , not 𝑓±𝜒2

∗𝐵 . The two solutions 𝑓±𝜒2
∗  differ in the behavior of sample 

paths at the 𝑋𝑡 = 0 boundary. 𝑓𝜒2
∗  is realized by instantaneous reflection there and 𝑓−𝜒2

∗  by absorption. These be-

haviors, as well as others intermediate between them, are components of the stochastic modeling vocabulary. 

Absorption at zero might represent permanent civilizational collapse while reflection could represent recovery.  

The reflecting and absorbing solutions each lose physical or economic plausibility for certain ranges of 

the constant drift factor 𝑐 (equivalently, of 𝜈 = 𝑐 𝑎⁄ − 1). For at 𝑋𝑡 = 0, the drift term 𝑐𝑑𝑡 in (36) becomes the 

only non-zero component, the only source of motion. The term can only drive reflecting (upward) motion if 𝑐 >

0. So the reflecting solution 𝑓𝜒2
∗  requires 𝑐 ≥ 0. It turns out that when 0 < 𝑐 < 𝑎, the modesty of the upward drift 

causes the density to approach infinity near the reflecting boundary. In contrast, when 𝑐 > 𝑎, the density ap-

proaches 0 near the boundary. The stronger upward drift makes the boundary fully escapable if 𝑋0 = 0 and un-

attainable if 𝑋0 > 0. Meanwhile, the absorbing solution 𝑓−𝜒2
∗  is compatible with negative drift (𝑐 ≤ 0) or modest 

positive drift 0 < 𝑐 < 𝑎. Because of the absorption, probability mass accumulates at the boundary, in the amount 

of 1 − 𝐹Γ(𝜆; −𝜈), where 𝐹Γ(⋅;⋅) is the cumulative standard gamma distribution. This mass point is not expressed 

in (40). 

Figure 5 depicts 𝑓±𝜒2
∗ , the absorbing and reflecting solutions for the Feller/CIR diffusion, for selected pa-

rameters. In all plots, 𝑋0 = 𝑎 = 1; and 𝑏 = −1, bestowing a component of exponential decay. From top to bot-

tom, 𝜈 = −1.5, −0.5, +0.5, meaning 𝑐 = −0.5,+0.5,+1.5. In each plot, time runs along the horizontal axes. Den-

sity values are shown by color, yellow indicating high and dark purple, low. The figures also show how the mean, 

median, and mode evolve.19 The figures omit the implausible cases of 𝑓−𝜒2
∗  with 𝜈 > 0 and 𝑓𝜒2

∗  with 𝜈 < −1. 

 
19 Means are computed analytically, according to formulas in section B.9.2. Medians and modes are computed numeri-
cally, starting from the analytical distribution formulas. 
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Only when 0 < 𝑐 < 𝑎 (−1 < 𝜈 < 0) are 𝑓±𝜒2
∗  both plausible and distinct. Feller (1951b) determines that 

within this parameter range, the Feller/CIR diffusion admits infinitely many plausible solutions, but does not 

find explicit statements of them. Members of the solution set differ in the boundary behavior of corresponding 

sample paths. Ito and McKean (1965) develops the theoretical tools for understanding these possibilities; but 

historically, the tools have not been applied to the Feller/CIR.20 

Theory points to two additional dimensions of boundary behavior when 0 < 𝑐 < 𝑎, which are poten-

tially relevant for modeling the human trajectory. First, the 𝑋𝑡 = 0 boundary may be sticky or slowly reflecting. 

On a given sample path, each sojourn at a sticky boundary is instantaneous. Yet the path may return with infini-

tesimal immediacy and infinite frequency, at least within a finite spell, so that total time spent at the boundary is 

positive. Like a fat Cantor set, the set of times at which the path is at zero has positive Lebesgue measure yet is 

nowhere dense (Engelbert and Peskir 2014). Peskir (forthcoming) develops sticky solutions for the squared 

Bessel process; Peskir and Roodman (forthcoming) extends these results to the Feller/CIR. 

The second aspect of boundary behavior that becomes compatible with valid solutions when drift is 

modestly positive (0 < 𝑐 < 𝑎) is perhaps easier to visualize, if less intuitively named: elasticity. While at the 

boundary, a path has a fixed, positive probability per unit time of being killed. A killed process does not stay at 

zero for eternity. Rather, it halts. That distinction becomes meaningful in conjunction with stickiness. Without 

the added possibility of killing, a particle will inevitably escape a sticky boundary, just as every atom in a radio-

active sample will eventually decay. With killing, the path might halt before escaping. 

Transferring the various Feller/CIR boundary behaviors to the superexponential diffusion introduces a 

conceptual complication. If 𝑋𝑡 reflects (absorbs) at 0 then 𝑌𝑡 = 𝑋𝑡
−1 𝐵⁄  with 𝐵 > 0 reflects (absorbs) at +∞. This 

notion is best interpreted probabilistically: when the boundary +∞ is reflecting, the probability that a sample 

path will dwell permanently there, i.e., explode, is zero; at all times, probability mass is diffused across (0,∞). 

When +∞ is absorbing, the probability of explosion is positive. 

3.3 Monte Carlo testing 

To test the superexponential diffusion model as the basis for a maximum likelihood (ML) estimator, and 

to compare it to NLS as applied in Kremer (1993), I run a Monte Carlo simulation. First, I fit the model to a GWP 

series using data and methods reported in the following sections (estimates from column 4 of Table 3, below). 

Using the resulting parameter estimates, along with the starting GWP value of $1.6 billion for 10,000 BCE, I gen-

erate 10,000 sample paths according to a finite-difference (Euler-Maruyama) approximation of (31) with a time 

step of 0.1 years. I run each path until it reaches 25,000 years or $100 trillion.21 I sample each to mimic the ob-

servation spacing in the GWP series introduced in the next section, with the same number of observations, 36, 

 
20 Molchanov (1967, remark 1) proposes forming the infinite family of convex linear combinations of 𝑓𝜒2

∗  and 𝑓−𝜒2
∗ , ap-

parently with fixed coefficients. However, these novel solutions are not in general Markovian. The rate of escape of 
probability mass from the boundary does not remain in fixed proportion to the amount of probability present there.  
21 Both estimators apply here tend to diverge for sample paths that, unlike the historical series, are dominated by de-
cay. So I discard paths that end lower than they start. I generate 1,222 paths and retain 1,000. 
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and the same relative spacings. For example, if a path reaches $100 trillion in 6,000 years, roughly speaking half 

the time of the actual series, then the final observations come every five years instead of every ten as in the ac-

tual series. To each path so sampled, I apply NLS for (5) and ML for (31). 22 

The simulation shows that ML estimation of the diffusion model is more efficient. NLS converges 98.8% 

of the time and ML 97.1%. When ML converges, NLS has a much higher dispersion: in estimating the scale effect 

𝐵, NLS and ML have standard deviations of 0.136 and 0.05, respectively. ML is essentially unbiased when it con-

verges (bias is −0.0008, two-tailed 𝑝 = 0.13) while the NLS has a bias of +0.019 (two-tailed 𝑝 = 0.000). See Fig-

ure 6. 

Theory foreordains this result: ML is efficient when correctly specified. Yet the exercise helps quantify 

the added precision from ML. And it is meaningful in that while the NLS model is internally inconsistent, as 

noted in section 1, the DGP most consistent with NLS in spirit is the superexponential diffusion. 

4 Data 

The empirics below will focus on GWP observed over the very long term, while paying modest attention 

to global population, GWP per capita, and frontier GDP/capita. The univariate stochastic model defined in the 

previous section is appropriate for GWP in that it posits that a fraction of society’s product is reinvested in the 

sources of its productivity (𝑠𝑌𝑡
1+𝐵) and also allows depreciation (𝛿𝑌𝑡). The model is somewhat less apt for popu-

lation since it would cast population as the sole source of its own “reinvestment,” thus omitting the crucial role 

of economic variables. The model is also less apt for a ratio such as GWP/capita. For while it is standard in mod-

els that make population exogenous to mathematically abstract from it by taking variables on a per-capita basis 

(Sala-i-Martin and Barro 2004, p. 28), such a factoring becomes impossible when population is endogenous. 

Then, GWP/capita is an inherently multifactor concept: GWP/capita per se is not invested in GWP/capita. 

Withal, the graphs of population and GWP/capita also look like hockey sticks, so it is interesting how well the 

superexponential diffusion fits them. 

The GWP and population series gathered here are extended back a million years—with caution. 

Szathmáry (2015) perceives seven major transitions in the history of life. Most occurred when competing 

units—genes, prokaryotes, individual animals—ganged up. The last of the seven was the development of natural 

language 40,000–50,000 years ago. Arguably it was then that technology gained its modern, alchemical charac-

ter. Through language, humans could share ideas more quickly and flexibly than any organism before. In light of 

this structural break, it may be best to apply the models developed above only to data from the last few myriads 

of years. 

Many authors provide long-term population series (Carr-Saunders 1936; Huxley 1950, Woytinksy and 

 
22 Since the NLS estimating equation ln 𝑦𝑡𝑖

̇ = 𝑠𝑦𝑡𝑖−1
𝐵 + 𝛿 + 𝜖𝑖  is linear but for exponentiation by 𝐵, it is fit by analyti-

cally concentrating out the other parameters, then iteratively maximizing the profile likelihood for 𝐵. The NLS esti-
mates are the starting points for the ML fits. As in Kremer (1993) the dependent variable in NLS is the compound an-
nual growth rate. To address heteroskedasticity, observations are weighted by the time spans between them. 
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Woytinksy 1953, Putnam 1953, Bennett 1954; Deevey 1960; Cipolla 1962; Clark 1967; Durand 1967, 1977; 

McEvedy and Jones 1978; Biraben 1979; Blaxter 1986; Maddison 2001). The estimates are not independent. Ra-

ther, a consensus has evolved as authors have copied or adjusted earlier figures or extended them back, incorpo-

rating information from sources such as ancient censuses and studies of population densities supportable with 

given forms of agriculture.23 As a result, available global population figures rarely disagree on overlap by more 

than 30% (Durand 1977, Table 5; Cohen 1995, Appendix 2). Among these sources, McEvedy and Jones (1978) 

provides the most observations before the Common Era. Maddison (2001, p. 230) generally prefers their figures 

and Kremer (1993) relies on them for 10,000 BCE–1900 CE.24,25 I also use them. 

Estimates of population before 10,000 BCE are especially uncertain—population not only of Homo sapi-

ens, but the genus Homo. Deevey (1960, p. 196) posits a human population of 0.125 million in 1 million BCE, 1.0 

million in 300,000 BCE, and 3.34 million in 25,000 BCE. Kremer (1993) incorporates these numbers. But, calling 

them “forty year old speculations,” Hanson (2000) prefers the estimates of 20,000 in 2 million BCE (Hawks et al. 

2007) and 0.5 million in the period 0.5–1.0 million BCE (Weiss 1984). However, these newer values may not be 

more reliable. Hawks et al. (2007) infer from genetic evidence the occurrence of a population bottleneck 2 mil-

lion years ago; but that speaks to the size of a breeding population from which modern people are descended, as 

distinct from the total population then extant. Meanwhile, the Weiss (1984) calculation is in the manner of 

Deevey and appears to contain an order-of-magnitude error.26 I follow Kremer (1993) in using the Deevey fig-

ures since these have not been obviously improved upon. 

Estimates of GWP and GWP/capita are dominated by the lifework of Angus Maddison. Maddison (2001, 

2003) calculates GWP for 1, 1000, 1500, 1600, and 1700, 1820, 1870, 1913, and more recent years. Only De 

Long (1998) has extended the Maddison estimates back; starting from the Maddison (1995) estimates for 1820–

1992, De Long develops a series starting in 1 million BCE. 

I take the Maddison (2010) global estimates as the spine for GWP/capita series. In so doing, I again es-

chew some previous tactics for extending series to ancient dates—in this case, those of De Long (1998). To ex-

tend the Maddison (1995) GWP series before 1820, De Long makes a Malthusian argument: when the binding 

limit on population is humans’ productive capacity, a change in GWP/capita should be followed by a change of 

the same sign in population. De Long observes that GWP/capita and population growth are indeed strongly, pos-

itively correlated “from the early nineteenth century until roughly World War II,” with a slope of $1,165 per 

 
23 On the intellectual history, see Caldwell and Schindlmayr (2002). 
24 However, for Asia in 1 CE, Maddison (2001, Appendix B) tends to take higher estimates from other sources. 
25 A recent synthesis of these estimates appears in Klein Goldewijk et al. (2017), which cites for pre-modern values 
McEvedy and Jones (1978), Maddison (2001), and Livi-Bacci (2007), the last of which appears to copy Biraben (1979). 
While the methodology of the synthesis is not documented, there is no suggestion that it injects new information. The 
main contribution appears to be interpolation of estimates with comprehensive geographic resolution and even tem-
poral spacing. Such imputations are presumably valuable as inputs to climate modeling. But they can harm when the 
imputed variable is the object of modeling, by adding spurious information content. 
26 Weiss (1984, p. 641) assumes an inhabited area of 13.3 million square miles, 34.5 million km2, and a population 
density of 0.28/km2, which yields 9.65 million people rather than the stated 0.5 million. In correspondence, Kenneth 
Weiss was quick to assume that there is an error in the paper. For 300,000 BCE, Deevey (1960) has 0.012/km2 and an 
inhabited area of 85 million km2, for a total of 1 million. 
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percentage point of population growth. De Long applies this association to population growth rates from Kremer 

to estimate GWP/capita back to 1 million BCE. But it may not be that meaningful to extrapolate the relationship 

between population growth and GWP/capita from an era of divergence from Malthusian equilibrium to an era 

dominated by it.27 

The other De Long tactic discarded here takes on board the argument of Nordhaus (1997) that standard 

measures of output growth grossly underestimate, because they do not fully capture the gains in quality and di-

versity of goods and services. As a rough adjustment, De Long injects an extra quadrupling into GWP growth be-

tween 1800 and 2000. Yet seemingly the reasoning applies before 1800 too: in many places, product quality and 

diversity increased between 800 and 1800. Since I cannot quantify these gains, I avoid such adjustments. 

I anchor a GWP/capita series in Maddison’s values for 1, 1000, and 1500–2010, while taking a subsist-

ence level of $400/year for 10,000 BCE and earlier. Before 1500, I interpolate log GWP/capita to dates for which 

population estimates are available by assuming that log GWP/capita grew in proportion with log population.28 

This makes some sense given the long-term, positive association between population and income. But it may 

understate short-term Malthusian effects. For example, average income in Europe is thought to have risen after 

the Black Death. Yet in the series constructed here, since GWP/capita is interpolated in positive association with 

population, GWP/capita falls between 1300 and 1400, from $551 to $541. In the empirics, I check for sensitivity 

to switching to De Long’s figures. 

Growth in GWP/capita can be factored into frontier growth and catch-up growth. Frontier growth is im-

portant because in can be the only source of permanent overall GWP/capita growth. I proxy for the frontier with 

France, a choice driven by a combination of data availability and France’s proximity to the frontier in modern 

and Roman times. The Maddison Project (Bolt et al. 2018) estimates income in the Gallic region back to 1 CE. Cov-

erage of France is strong starting in 1280, thanks to the analysis of Ridolfi (2016) of wages and prices in primary 

sources such as records for work on the Chartres Cathedral. I extend this series back by copying GWP/capita 

values for 5000 and 10,000 BCE. I extend it forward from 2016 with growth rates from the IMF (2020, series 

NGDPRPPPPCPCH). 

Table 2 displays the data for population, GWP/capita, GWP (their product), and GDP/capita for France. 

 
27 The conceptual basis for the extrapolation is further muddied in the De Long (1998) implementation by a mix of 
time period lengths: e.g., the observation of GWP/capita in 1800 is associated with average population growth in the 
next 50 years while that in 1960 is matched to the next five. In the event, the De Long (1998) extrapolations did not 
perform especially well in predicting the pre-1820 estimates that Maddison subsequently published. For example, 
where Maddison (2010) perceives a decline between 1 and 1000 CE from $467 to $453 and then a rise by 1500 to 
$566, the De Long (1998) method produces the opposite: a substantial rise in those first 1000 years, from $404 to 
$494, then a slight climb in the next 500, to $512. In addition, reverse-engineering reveals a few undocumented and 
debatable choices in De Long (1998). The regression that is for the basis for extrapolation is run on a data series that 
itself contains imputations, e.g., for 1800, 1850, 1875, 1920, 1925, and 1940. And before serving as the independent 
variable in the extrapolation, pre-1800 population growth rates are smoothed via a three-observation moving aver-
age, without adjustment for the uneven spacing of observations. For example, the smoothed, growth rate for 1 CE is 
the simple average of the annualized growth rates for 200 BCE–1 CE, 1–14 CE, and 14–200 CE. 
28 I also incorporate updates for Western Europe from the Maddison Project (Bolt and van Zanden 2014), which in 
turn draws on new scholarship on the evolution of material standards of living in that region. But the Maddison Pro-
ject updates do not estimate global totals, so Maddison (2010) remains the foundation. 
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As explained in footnote 25, population estimates in the HYDE climate modeling database are not used 

here. However, one element of that data set is taken up: an indicator of the uncertainty of estimates. Klein 

Goldewijk et al. (2017, p. 8) expresses the uncertainty as ±1% for the year 2000 and thereafter, ±5% for 1900, 

±25% for 1700, ±75% for 1 CE, and ±100% 10,000 BCE. Values in between are linearly interpolated. The authors 

do not ascribe p values to these ranges. I incorporate these uncertainty indicators, call them ℎ𝑡, as observation 

weights 1 (1 + 2ℎ𝑡
2)⁄  in the regressions.29 This weights ancient observations—already deemphasized by their 

sparsity—a third as much as the modern ones, since ℎ𝑡 = 1 for former and ~0.01 for the latter.30 

One potential elaboration is to study data for continental regions such as Eurasia and Africa. But it is not 

pursued here. Fits to regional data before significant global integration, say in 1500, could provide independent 

tests of the model. Unfortunately, the available data do not appear to support regionalization of the time series 

approach. The series for Eurasia dominates the world total throughout, so restricting to the region does not af-

fect results much. The series for the Americas before contact with Europe is too short and uncertain to support 

formal modeling.31 The same goes for Africa, if distinguished from Eurasia.32 

5 Estimation 

Using ML, I fit the superexponential diffusion to the data. The modeling is dynamic: the log likelihood for 

each observation is computed with (41), conditioning on the previous observation. The reflecting and absorbing 

models (𝑓±𝜒
∗𝐵) are estimated, and the better fit reported. Sticky models turn out not to be relevant because 𝜈 is 

estimated to be well outside [0,1]. Observations are weighted by the HYDE-based weights described above. In 

addition, to test the hypothesis of exponential growth, I fit the CEV. Recall that this imposes 𝑠 = 0 in (31), the 

marker of constant, exogenous growth. 

5.1 Estimates for GWP 

I model four versions of the GWP series: with and without pre–10,000 BCE observations, with and with-

out annual data after 1950. The latter variation bears explaining. If the diffusion model is correct, it requires no 

 
29 I also set ℎ𝑡 = 1 for 𝑡 <10,000 BCE. 
30 A rough theory for the weighting runs as follows. Since we estimate with dynamic maximum likelihood, the princi-
pled question is how measurement error affects the log likelihood for each observation 𝑌𝑡𝑖 conditional on the previous 

one, 𝑌𝑡𝑖−1 . If the process were pure Brownian motion, with 𝑏 = 𝑐 = 0, and if there were no measurement error, then 

the distribution 𝑌𝑡𝑖|𝑌𝑡𝑖−1 would be normal, with variance 2𝑎𝑡, with 𝑡 ≔ 𝑡𝑖 − 𝑡𝑖−1. The log likelihood would be −0.5 ⋅

(ln 2𝑎𝑡𝜏 + (𝑌𝑡𝑖 − 𝑌𝑡𝑖−1)
2 2𝑎𝑡⁄ ), where 𝜏 = 2𝜋 is the circle constant. But if 𝑌𝑡𝑖 and 𝑌𝑡𝑖−1 are measured with normally dis-

tributed errors of variance ℎ2𝑌𝑡𝑖
2 and ℎ2𝑌𝑡𝑖−1

2 , and if these errors are independent, then 𝑌𝑡𝑖 − 𝑌𝑡𝑖−1 is measured with nor-

mal error of variance of approximately ℎ2𝑌𝑡𝑖
2 + ℎ2𝑌𝑡𝑖−1

2 ≈ 2ℎ2𝑌𝑡𝑖
2. If this error is in turn independent of the process, 

then it adds to the variance of measured 𝑌𝑡𝑖  while preserving normality. The likelihood becomes −0.5 ×

[ln(2𝑎𝑡 + 2ℎ2𝑌𝑡𝑖
2)𝜏 + (𝑌𝑡𝑖 − 𝑌𝑡𝑖−1)

2 (2𝑎𝑡 + 2ℎ2𝑌𝑡𝑖
2)⁄ ]. Focusing on the second term, which contains the squared change, 

incorporating measurement error as described multiplies the term by 1 (1 + 2ℎ2𝑌𝑡𝑖
2 2𝑎𝑡⁄ )⁄ . If we take 𝑌𝑡𝑖

2 as a scale 

proxy for the rising variance 2𝑎𝑡, then we can take the ratio as roughly 1 (1 + 2ℎ2)⁄ . 
31 McEvedy and Jones (1978) provide estimates only for 10,000, 9000, 6000, 5000 BCE and 1, 1000, and 1500 CE. 
32 Diamond (1997, ch. 10) argues that the predominately north-south orientation of the African land mass created nat-
ural ecological barriers to dissemination of innovations, which long isolated sub-Saharan Africa from Eurasia. 
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adjustment for variation in observation spacing. For example, fitting the model to a series with annual rather 

than decennial data after 1950 would not spuriously overweight the postwar era. The likelihood assigned to 

each observation would properly quantify its information content. That said, an assumption that may become 

suspect at high sampling frequency is that the series is Markovian. It is possible, for example, that since 1950, 

the series contains a trend from which GWP cyclically deviates and returns—in other words, that the true Mar-

kov process is hidden.33 Modeling the annual data available starting in 1950 might mix some short-term, trend-

reverting behavior into what is before then a sparser series. The negative association between level and subse-

quent change would downward-bias estimates of the long-term propensity for growth. Two parameters figure in 

the relevant term in the growth equation, 𝑠𝑌𝑡
1+𝐵; since this phenomenon would occur only in the modern, high 

observations, the downward bias might load mainly onto 𝐵. This motivates estimation with only decennial data 

after 1950 (including the 2019 observation). 

Table 3 reports results for the four samples. In estimation, the primary parameters are not those in the 

SDE (31) for the variable 𝑌𝑡—not 𝑠, 𝐵, 𝛿, and 𝜎. Instead, the estimation parameters are more closely linked to the 

Feller/CIR SDE (36) for the related variable 𝑋𝑡. The three are ln 𝑎, 𝑏, and 𝜈 = 𝑐 𝑎⁄ − 1. The final estimation pa-

rameter is an exponent, 𝛾, which equals −1/𝐵.34 The superexponential SDE parameters are then derived and 

their standard errors computed with the delta method; all are also in Table 3.35 

Results for the full series are in column 1. They put the depreciation rate of the productive potential of 

humanity at −3.95 × 10−5/year (standard error 1.15 × 10−5). Such a low rate is implausible if read as applying 

to physical or human capital, but can make sense if the essential productive stock in the long run is ideas. The 

investment rate 𝑠 is also small, if with expected sign, at 1.49 × 10−4 (s.e. 2.81 × 10−5). Perhaps for most of his-

tory, lived near subsistence, our species invested slowly in knowledge. Or perhaps the productivity of such in-

vestment was low. Meanwhile, the scale effect 𝐵 is estimated at 0.518 (s.e. 0.0275). According to equation (27), 

the implied returns elasticity for investment in TFP is about −1.4. 

These results flow from the absorbing-barrier model, whose fit yields a higher likelihood than the re-

flecting model. Since the “barrier” here is in the first instance the zero boundary for the Feller/CIR variable 𝑋𝑡, 

and GWP is modeled as 𝑌𝑡 = 𝑋𝑡
−1 𝐵⁄ , and since 𝐵 is estimated to be positive, 𝑌𝑡 experiences an absorbing barrier 

at +∞. In the mathematical universe of the fitted model, there is positive probability of explosion. 

Column 1 of Table 3 includes results that interrogate this propensity for explosion. Given an initial GWP 

level 𝑌0, the probability that a sample path will not eventually explode is 𝐹Γ(𝑌0
−𝐵𝑏 𝑎⁄ ;−𝜈). (Appendix B.9.1 de-

velops this and related formulas.) Setting 𝑌0 to the GWP value for 1 million BCE, $0.05 billion, this probability is 

0.978. Conditioning instead on the 2019 GWP of $73.6 trillion, the probability of no eventual explosion is just 

 
33 Regarding GDP/capita in frontier economies, a stream of literature starting with Nelson and Plosser (1982) favors 
the unit-root view. Other research challenges it. 
34 Usually, the power series representations of the densities 𝑓±𝜒2 in (37) and (38) converge fast enough, requiring 

computation of at most the few million terms around the peak term. For extremely large values of 𝜆𝑥, estimation is 
instead based on Hankel’s asymptotic expansion of the modified Bessel function of the first kind (NIST, eq. 10.40.1) or, 
if 𝜈 ≫ 𝑥𝜆, the large-order approximation (NIST, eq. 10.41.1). 
35 The translation inverts the definitions (35): 𝑠 = 𝛾2𝑎(1 + 𝛾𝜈), 𝛿 = 𝑏𝛾, 𝜎 = 𝛾√2𝑎. And 𝐵 = −1 𝛾⁄ . 
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5 × 10–139. Giving non-exploding sample paths an explosion date of ∞, the median wait till explosion is 

−(ln(1 − 𝑏𝑌0 𝑎𝐹Γ
−1(0.5; −𝜈)⁄ )) 𝑏⁄ . In this case, starting from 2019’s GWP, the median explosion date is 2060 (s.e. 

~9 years). Strange as that result is, a likelihood ratio test rejects the exponentially growing CEV model as an al-

ternative (𝑝 = 0.000).  

The results are perhaps better conveyed graphically. As the estimates hold that 𝛿 < 0 and 𝐵 > 0, they 

correspond to the case discussed after (30), in which the starting value determines whether the explosive pro-

pensity overcomes the downdraft of depreciation. But in the stochastic model, both outcomes can eventuate 

from any starting point. Figure 7 illustrates this richness by plotting 99 rollouts of the full-sample model fit. The 

empirical GWP series is in red and the simulation rollouts in greys. One rollout attains sustained growth and ex-

plodes within a quarter million years. The rest never escape decay. This simulation accords with the analytically 

derived 0.978 chance of no eventual explosion. 

On its face, this result says that the attainment of civilization—indeed, the survival of our genus to this 

point—was improbable. This tension between model and reality admits at least two explanations. One is that the 

model is roughly correct. If so, then history’s defiance of this prediction of extinction illustrates the anthropic 

principle (Carter 1974). Conditioning on the fact that such a paper as this has been written, the retrospective 

odds of takeoff are high. The other explanation is that the model is substantially incomplete—which surely it is. 

The inability of the univariate model to capture the Malthusian equilibration between income per person and 

population appears to render it unrealistically unstable: notice all the sample paths diverge from observed his-

tory. And it may ask too much to fix the same parameter values before and after the evolution of language. 

To better convey the model fit, Figure 8 changes the presentation in several ways. Instead of 99 rollouts 

from the starting point, 10,000 are run. Another 10,000 are run from the 2019 observation. For each bundle, the 

median as a function of time is depicted with a black line, while the 5th, 10th, etc., quantiles are marked with 

changes in shading. The time axis is now logarithmic in years till the median explosion date of 2060. Finally, to 

convey uncertainty in the model fit along with the modeled stochasticity, each rollout incorporates a different set 

of parameters, drawn randomly from a joint distribution. For this purpose, the estimates of the primary parame-

ters, ln 𝑎 , 𝑏, 𝜈, and 𝛾 are assumed to be distributed multivariate normal, with the covariance produced by the ML 

estimator. In the figure, the distributions emerging from the initial and final observations clash. 

Retaining only decennial observations after 1950 changes the results statistically but not qualitatively 

(Table 3, column 2). The estimate of the overall scale effect 𝐵 rises from 0.515 to 0.629 (s.e. 0.0407). This sug-

gests that trend reversion in the annual data does downward-bias the estimates of the scale effect. The median 

explosion year moves from 2060 to an eye-popping 2041. 

Next Deevey (1960)’s three pre–10,000 BCE observations of GWP are dropped (columns 3 and 4 of Ta-

ble 3). The scale effect 𝐵 falls to 0.429 (s.e. 0.0416) with annual data after 1950, and to 0.552 (s.e. 0.0492) with 

decennial data. Under the latter estimates, the probability of no eventual explosion from the starting GWP value 

of $1.6 billion in 10,000 BCE is a mere 1.63 × 10−10, quite opposite the first estimate of 0.978. Conditioning on 

2019 GWP, the results now put the median explosion at 2047 (s.e. 8 years).  
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I mildly prefer this last specification since it skirts the structural break of the birth of language and per-

haps reduces misspecification by taking decennial observations after 1950. The scale effect estimate for GWP, 

0.55, implies a returns elasticity for TFP of about −1.25. Sample paths under the fit mimic history: see Figure 9 

and Figure 10. In the diffusion plot in Figure 10, observed GWP largely stays between the 40th and 60th quantiles 

of the simulations. And the diffusion emerging from the last observation coheres with that emerging from the 

first. 

5.2 Robustness and goodness of fit 

While it is clear that GWP growth has on average risen with GWP, much of the data buttressing that gen-

eralization is uncertain. And errors in the ancient observations might distort the estimation of the probability 

and timing of explosion. To test for such sensitivity, I rerun the preferred regression after multiplying all GWP 

observations by 𝑒−ℎ𝑡, where ℎ𝑡 is the HYDE uncertainty indicator. Recall that ℎ𝑡 ranges from 1 in the earliest ob-

servations to .01 in the most modern. I do the same after multiplying by 𝑒ℎ𝑡. The results are not sensitive to 

these changes. The first one lowers the estimate of 𝐵 from 0.552 to 0.492 and defers the median explosion year 

from 2047 to 2050. The second yields 0.616 and 2043. 

I also estimate against the De Long (1998) GWP series for 10,000 BCE–2000 CE in order to check for 

sensitivity to the method of interpolating GWP/capita. This change matters more, but not qualitatively. With the 

preferred series halted in 2000 for comparability, switching to the De Long data lowers the estimate of 𝐵 from 

0.595 to 0.517. The median explosion, conditioning on the 2000 GWP value, shifts from 2031 to 2022. 

A more cutting concern is about goodness of fit. The superexponential growth component of the model 

captures the first-order pattern of acceleration. The stochastic component captures how GWP oscillated around 

this longer term trend—but not fully, it turns out. I check goodness of fit as follows. If the best-fit model is cor-

rect, then the quantiles of the observations within the distributions predicted for them under the best fit should 

be i.i.d. uniform. I check the uniformity of these quantiles with the Kolmogorov-Smirnov (KS) test and check 

their independence by examining their serial correlation. As shown along the bottom of Table 3, the regressions 

with annual data after 1950 fail both tests. Those with decennial data after 1950 do pass the KS test, but perhaps 

only because shrinking the sample reduces power. 

For the preferred regression (Table 3, col. 4), Figure 11 plots the quantiles that are the subject of these 

tests. While the distribution of the quantiles may be formally indistinguishable from uniform, the series indeed 

contains episodic patterns that violate the Markovian diffusion model. The data points for 1820, 1870, and 1913, 

the zenith of the industrial revolution, ascend steadily. Then, starting in 1960, the quantiles descend monoton-

ically, indicating that GWP growth has failed to accelerate as much as predicted. While the univariate diffusion 

model captures important aspects of GWP history, it leaves much out.  

Since Figure 11 is built from a fit of data through 2019, it effectively asks whether GWP history is sur-

prising conditional on it having happened. That is appropriate for testing goodness of fit. With modifications, the 

figure can avoid this circularity and better address whether certain historical developments broke with the past. 

Figure 12 is like Figure 11 except that the quantile for each observation is computed after fitting the absorbing-
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boundary model only to previous observations. Also, like the diffusion plots in Figure 8 and Figure 10, the distri-

butions are simulated while incorporating parameter uncertainty (with 10,000 rollouts and 10,000 time steps). 

Convergence often fails for the earliest observations, evidently because of small samples, but stabilizes around 

1500. Figure 12 accentuates the impression left by Figure 11. Observations during the first century of the indus-

trial revolution are high while those since 1960 are low. 

5.3 Estimates for series other than GWP 

As argued at the start of section 4, the univariate stochastic model is more suited to GWP than popula-

tion and income per capita. Nevertheless, it is interesting to test it against the other variables. Estimates from 

the preferred sample—starting in 10,000 BCE, decennial observations after 1950—are in Table 4. Three new 

variables are modeled: world population; GWP/capita; and GDP/capita in the frontier economy of France. Diffu-

sion and quantile plots constructed the same way as Figure 10 and Figure 11 are gathered in Figure 13. 

In all cases, the likelihood is again maximized by assuming an absorbing barrier at 𝑋𝑡 = 0 and taking 

𝐵 > 0, which maps that barrier to +∞ for 𝑌𝑡. In all cases, therefore, the model perceives a positive probability of 

explosion. The results for population broadly resemble those for GWP, which is perhaps expected in light of the 

dominance of population growth in GWP growth for most of history. Compare Table 4’s column 1 for GWP 

(which is copied from Table 3, column 4) with the next column. The estimates for 𝑠, 𝐵, and 𝛿 hardly differ statis-

tically. As a result, the estimate of 𝐵 is about half the 1.03 attained via NLS in Kremer (1993, Table VI, col. 1). The 

stochasticity coefficient 𝜎 is larger than for GWP, perhaps to accommodate the surprise of the global fertility de-

cline. This surprise presumably also explains the deferment of the median explosion year to 2175 (s.e. 47.6). 

The fits to GWP/capita and frontier GDP/capita are worse—see columns 3 and 4 of Table 4 and the bot-

tom two-thirds of Figure 13. The superexponential tendency is now measured as greater, presumably because of 

the suddenness of the acceleration of these variables a few centuries ago. The exponent 𝐵 is estimated at a high 

1.699 (s.e. 0.335) for GWP/capita and 0.945 (s.e. 0.262) for frontier GDP/capita. This helps explain why the me-

dian rollout under the best fits for both GWP/capita and frontier GDP/capita explodes by 6600 BCE. 

6 On the meaning of singularities 

The results just presented are at once unsurprising and implausible: unsurprising because the accelera-

tion in the expansion of the human system over the very long term is recognized; implausible because of the 

conflict with the recent experience of relatively steady global growth, not to mention the laws of physics. What 

should we make of the conflicts? 

It is easy to dismiss the outsider-model’s implications for historical base rates or base distributions for 

growth changes—to conclude that a good model for the past tells us little about the future. After all, the progres-

sion of human affairs is complex and could follow different patterns in different eras. Yet to declare a complete 

structural break is to risk, in the wording of Occam’s razor, multiplying entities without necessity. Aiming to har-

vest the most insight from the tension between outside and inside views, I will start from the claim that the 
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outside view’s superexponential dynamic remains relevant, then yield ground. 

Johansen and Sornette (2001) observe that singularities in model are a sign that it is being stretched be-

yond the realm of state space for which it is appropriate. Beyond that realm, some factor once neglected no 

longer can be, like the fact that the speed of light is the same in all inertial reference frames. “Singularities are 

always mathematical idealisations of natural phenomena: they are not present in reality but foreshadow an im-

portant transition or change of regime.” (Johansen and Sornette 2001, p. 479). 

In GWP growth, what might be the factor once neglected that no longer can be? I see three candidates. 

First, the superexponential singularity is formally an artifact of passing to the infinitesimal limit, the very analyt-

ical step that makes possible the ordinary and stochastic calculi. In real economies, technological advance and 

reinvestment of output of capital do not occur as a continuous sequence of infinitesimal impulses, each instanta-

neously propagated. This is why finite-difference simulations of the abstract economies defined here do not in 

fact reach infinite output but terminate upon numerical overflow. With an adequate system for representing 

large numbers, the simulations could be continued for an arbitrarily long time. The infinitesimal approximation 

may hold well enough at a hypothetical growth rate of 1% per year, but perhaps not at 1% per hour. 

The upshot of this concession, however, seems only to be that while GWP will not go to infinity, it will 

still get stupendously big. Does that suffice for realism? Conceivably. In the last century or so, human beings 

have built machines that solve challenges evolution took millions of years to solve: locomotion on land, flight, 

vision, calculation, communication. We have not made machines as good as us at formulating and carrying out 

effective plans in complex environments, which arguably is the Holy Grail of AI research. But we might yet. This 

would open major new production possibilities (Hanson 2001; Yudkowsky 2008; Bostrom 2014). Even more 

radically, if AI is doing the economic modeling a century from now, it may count the welfare of artificial minds in 

GWP. Their number would presumably dwarf the human population. As absurd as this scenario may sound, an 

AI revolution could be seen as a stage in the unfolding that began with talkative, toolmaking apes. 

While it is impossible to dismiss such fantastic possibilities, we should not let them distract from other 

shortcomings in the models developed here. A second factor that becomes dangerous to ignore as the models 

diverge is the consumption side, that is, the allocation of output among consumption and investment in various 

inputs. The neoclassically inspired model in section 2 articulates a Cobb-Douglas production process, which im-

plies a microtheory of optimizing agents on the production side. But while it gives flexibility to investment rates 

by modulating them isoelastically with the technology level, this formulation is fixed-coefficient in spirit. It is not 

grounded in a theory of optimizing agents that adjust to, and even foresee, radically changing circumstances. 

Fixed coefficients may do limited harm in a model converging to a steady state. They become more problematic 

in a system that diverges. 

The third neglected factor in this paper’s model links most directly to physics. The model does not rec-

ognize that the output of the terrestrial economy is effectively capped by the flow of negative entropy from the 

sun and the earth’s interior (Georgescu-Roegen 1971; Daly 1977). Conventional modeling obscures the link be-

tween economic activity and entropy by taking production to extract flows of output from stocks of inputs while 
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leaving the inputs unchanged, which is thermodynamically all but impossible. Depreciation is modeled as decou-

pled from how much the stocks are used in production, which still implies that production per se has no thermo-

dynamic consequence. The limit imposed by nature is not theoretically inviolable since the locus of valuation of 

output is the mind of the consumer, and humans might have a taste for entropy; but that possibility seems aca-

demic. 

In the multivariate model in section 2.1, the finitude of natural resources does in fact damp economic 

growth. The factor 𝑅 is fixed at one and assigned a Cobb-Douglas exponent of 0.1, so that the remaining non-

technology inputs have diminishing returns to scale, at 0.9. But that does not prevent explosion. Might the rela-

tionship between the artificial and the natural be captured more realistically within this mathematical frame-

work? The best that can be done is to introduce a combination of exogenous appreciation in natural resources 

and endogenous disinvestment in them, the entropic corrosion from economic activity. A simulation appears in 

Figure 14. The model and initial values are the same as the exploding case in Figure 3 except that the reinvest-

ment coefficient 𝑠𝑅 and appreciation rate 𝛿𝑅 are changed from 0 and 0 to −0.01 and 0.001. Like population, the 

stock of resources 𝑅 is taken as initially plentiful, at 1. From there, the slow increase in 𝑅 (in green) hastens the 

explosion by about 1000 years. But the approach of explosion initiates a plummet in 𝑅, which quickly brings out-

put (𝑌, in red) to zero. Making the new factor suffer endogenous harm deflects the explosive impulse downward. 

The scenario is, one hopes, unrealistic, not least because of the second neglected factor, the response of 

agents to changing circumstances. Yet the augmented model suffices to demonstrate that a fully endogenous, 

accelerating-growth model need not generate infinities. Thus the presence of infinities in certain simplifications 

of such models—ones neglecting natural resource dynamics—is not a logical basis for dismissal of the whole 

class. 

Sadly, natural resource depletion is not the only plausible route to Armageddon (Bostrom and Ćirković 

2008; Ord 2020). Some categories of global catastrophic risk are ancient, such as pandemics, while others are 

made possible by modernity, including nuclear winter and, conceivably, an AI-sparked collapse. This may be the 

true message of the infinities: not that society will literally explode or implode, but that the human project is in-

trinsically unstable. When more broadly contemplating the human past and prospect, the traditional focus in 

growth theory on the steady state seems narrow. 

7 Conclusion 

Solow and Swan built the neoclassical model in the 1950s to explain the relative stability of frontier-

economy development over previous decades. Coming after the Depression and during the Cold War, the model 

spoke to concerns of the day. It offered hope that Western economies could experience steadily rising prosper-

ity. The models generated this prediction through a kind of humility, leaving determinants of major inputs out-

side the theory, and tending to endow the inputs with constant growth as a placeholder. When studying the very 

long term, removing those asymmetric restrictions seems more realistic as a matter of principle and evidence. In 

the very long run, surely all the conventional factors—population, capital, etc.—are endogenous to output and to 
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each other. And fully endogenous models diverge, thereby easily explaining the acceleration of growth in the 

historical record. Perhaps this framework, along with the stochastic data generating that gives it econometric 

rigor, resonates more with concerns of our day: pandemics, the propensity of the human system to attack its 

ecological foundations, the benefits and dangers of artificial intelligence. 

A throughline of this paper, motivated by the outside-view’s interest in base rates, has been the search 

for a mathematical representation of history that balances parsimony and realism, if emphasizing parsimony. A 

four-parameter, univariate model that integrates scale effects, depreciation, and dynamic stochasticity can rec-

ognizably approximate GWP history since 10,000 BCE. The scale effect is estimated at 0.55 for GWP. This sug-

gests a returns elasticity for investment in TFP of −1.25, over the very long term. Perhaps ideas have always got-

ten harder to find, even as the capacity to search for them—thanks to previous innovations—has grown even 

faster. 

A model emphasizing parsimony deserves critique for realism; and a model with a coherent statistical 

foundation supports such critique, for it can quantify its own failings. The outsider model developed here strug-

gles to reproduce the combination of a million years of near-stasis and a few millennia of explosion. Even when 

restricted to the more explosive phase, the model is surprised by the industrial revolution and the relatively 

slow, steady growth of recent decades—phenomena that more richly specified models can better explain, such 

as the “unified growth theory” of Galor and Weil (2000). 

By the same token, the natural inside view of the growth prospect in the current century—that popula-

tion growth will slow or halt and per-capita GWP growth will converge to a modest frontier-economy rate—de-

serves critique for neglecting the base rates revealing in the longer-term history. This paper’s investigation sug-

gests that a naïve inside view underestimates the propensity for instability in the human system. 
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Table 1. Parameter values in simulated Cobb-Douglas economy 
Input Parameter Value Notes and sources 
Technology 
(𝐴) 

𝛼𝐴 1 Factor-neutrality 
𝑠𝐴 0.025 ~ global R&D/GDP (World Bank 2019, series GB.XPD.RSDV.GD.ZS) 
𝜙𝐴 −0.5 Corresponds to 𝜙 = 0.5 in Jones (2001, p.23) 
𝛿𝐴 −0.001 Small but not 0 

Capital (𝐾) 𝛼𝐾  0.3 Mankiw, Romer, and Weil (1992, Table II, col. 1) 
𝑠𝐾  0.25 ~ global gross capital formation/GDP (World Bank 2019, series NE.GDI.TOTL.ZS) 
𝜙𝐾  0  
𝛿𝐾  −0.03 Mankiw, Romer, and Weil (1992, note 6) 

Population 
(𝑃) 

𝛼𝑃 0.3 Chosen so 𝛼𝑃 + 𝛼𝐻 = 0.6, close to typical value for labor share in GDP 
𝑠𝑃 0.2 ~ global health spending/GDP (World Bank 2019, series SH.XPD.CHEX.GD.ZS) after dou-

bling to add nutrition, etc. 
𝜙𝑃  −0.1 Sign from Galor (2012) finding that technological advance shifts investment from child 

quantity to quality; magnitude arbitrary 
𝛿𝑃  −0.02 Corresponds to life expectancy of 50 years 

Human cap-
ital (𝐻) 

𝛼𝐻 0.3 Mankiw, Romer, and Weil (1992, Table II, col. 1) 
𝑠𝐻 0.04 ~ global education spending/GNI (World Bank 2019, series NY.ADJ.AEDU.GN.ZS) 
𝜙𝐻  0.1 = −𝜙𝑃   
𝛿𝐻 −0.02 = 𝛿𝑃; Barro and Lee (2000, eq. 5) also equates population and human capital attrition 

Natural re-
sources (𝑅) 

𝛼𝑅 0.1  
𝑠𝑅 0 Held fixed 
𝜙𝑅  0  
𝛿𝑅 0  

Note: 𝛼 parameters are exponents in Cobb-Douglas production of output. 𝑠 parameters are investment rates of output into inputs. 𝜙 
parameters are elasticities of this investment to technology. 𝛿 parameters are exogenous appreciation/depreciation rates. 
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Table 2. Preferred estimates of population and gross world product, 1 million BCE–2019 CE 

  
Notes: Population figures: for before 10,000 BCE from Deevey (1960); for 10,000 BCE–1400 CE from McEvedy and Jones (1978); for 1500–
2010 from Maddison (2010); and for 2011–18 from UN (2019, file POP/1-1). GWP/capita figures: through 10,000 BCE set to $400, the sub-
sistence estimate of Maddison (2001, p. 260); for 1 CE, 1000 CE, and 1500–2010 from Maddison (2010), incorporating revisions for Western 
Europe in Bolt and Van Zanden (2014); for other years before 1500 geometrically interpolated with respect to population; and for 2011–18 
extrapolated forward using growth rates from IMF (2020, series NGDP_RPCH). Money values in Geary-Kharnis dollars of 1990. Figures for 
France from Bolt et al. (2018), except that those for 10,000 BCE and 5000 BCE are the GWP/capita figures converted from dollars of 1990 to 
dollars of 2011 and those after 2016 extrapolated forward using growth rates from IMF (2020, series NGDPRPPPPCPCH). 

  

Year

Population

(million)

GWP/ 

capita 

(1990 $)

GWP

(billion 

1990 $)

GDP/ 

capita, 

France 

(2011 $)
1000000 BCE 0.125 400 0.05

300000 BCE 1.0 400 0.40
25000 BCE 3.34 400 1.34
10000 BCE 4 400 1.60 658

5000 BCE 5 404 2.02 664
4000 BCE 7 409 2.87
3000 BCE 14 421 5.90
2000 BCE 27 433 11.7
1000 BCE 50 444 22.2

500 BCE 100 457 45.7
200 BCE 150 465 69.7

1 CE 168 467 78.4 1,050
200 CE 190 463 88.0
400 CE 190 463 88.0
500 CE 190 463 88.0
600 CE 200 462 92.3
700 CE 210 460 96.6
800 CE 220 459 101
900 CE 240 456 109

1000 CE 265 453 120
1100 CE 320 512 164
1200 CE 360 551 198
1300 CE 360 551 198 1,469
1400 CE 350 541 190 1,853
1500 CE 438 625 274 1,748
1600 CE 556 629 350 1,661
1700 CE 603 658 397 1,748
1820 CE 1,042 712 741 1,867
1870 CE 1,276 884 1,128 3,086
1900 CE 1,563
1913 CE 1,793 1,543 2,767 5,733
1920 CE 1,863
1940 CE 2,299 2,181 5,013 6,650
1950 CE 2,528 2,104 5,318 8,531
1951 CE 2,572 2,191 5,635 8,984
1952 CE 2,618 2,250 5,891 9,154
1953 CE 2,666 2,320 6,185 9,351
1954 CE 2,717 2,353 6,393 9,731
1955 CE 2,769 2,457 6,804 10,198
1956 CE 2,823 2,524 7,125 10,608
1957 CE 2,880 2,567 7,394 11,124
1958 CE 2,939 2,596 7,631 11,277
1959 CE 2,996 2,665 7,984 11,481
1960 CE 3,042 2,764 8,407 12,170
1961 CE 3,082 2,821 8,695 12,698
1962 CE 3,136 2,902 9,101 13,271
1963 CE 3,201 2,965 9,492 13,757
1964 CE 3,266 3,118 10,184 14,509
1965 CE 3,333 3,218 10,725 15,078
1966 CE 3,402 3,326 11,315 15,701
1967 CE 3,471 3,381 11,738 16,298
1968 CE 3,543 3,494 12,379 16,890

Year

Population

(million)

GWP/ 

capita 

(1990 $)

GWP

(billion 

1990 $)

GDP/ 

capita, 

France 

(2011 $)
1969 CE 3,616 3,613 13,063 17,908
1970 CE 3,691 3,725 13,751 18,771
1971 CE 3,770 3,797 14,315 19,486
1972 CE 3,846 3,901 15,004 20,175
1973 CE 3,923 4,081 16,009 21,097
1974 CE 3,998 4,097 16,378 21,571
1975 CE 4,071 4,086 16,634 21,316
1976 CE 4,141 4,213 17,448 22,154
1977 CE 4,214 4,308 18,154 22,888
1978 CE 4,286 4,422 18,953 23,427
1979 CE 4,363 4,500 19,632 24,075
1980 CE 4,440 4,511 20,026 24,292
1981 CE 4,515 4,523 20,419 24,413
1982 CE 4,587 4,500 20,644 24,893
1983 CE 4,676 4,539 21,226 25,080
1984 CE 4,757 4,668 22,201 25,305
1985 CE 4,838 4,748 22,967 25,549
1986 CE 4,921 4,832 23,779 26,047
1987 CE 5,007 4,932 24,692 26,581
1988 CE 5,093 5,056 25,753 27,621
1989 CE 5,181 5,133 26,592 28,460
1990 CE 5,269 5,149 27,133 29,031
1991 CE 5,352 5,141 27,517 29,158
1992 CE 5,436 5,163 28,065 29,449
1993 CE 5,518 5,201 28,702 29,113
1994 CE 5,599 5,305 29,705 29,656
1995 CE 5,682 5,443 30,927 30,135
1996 CE 5,762 5,547 31,962 30,415
1997 CE 5,842 5,688 33,229 30,987
1998 CE 5,921 5,718 33,855 31,941
1999 CE 6,000 5,850 35,099 32,872
2000 CE 6,077 6,057 36,806 33,967
2001 CE 6,155 6,161 37,918 34,434
2002 CE 6,232 6,303 39,281 34,618
2003 CE 6,308 6,526 41,167 34,707
2004 CE 6,374 6,782 43,228 35,465
2005 CE 6,463 7,001 45,249 35,817
2006 CE 6,544 7,276 47,610 36,439
2007 CE 6,625 7,504 49,711 37,068
2008 CE 6,707 7,626 51,148 36,928
2009 CE 6,790 7,478 50,775 35,642
2010 CE 6,873 7,814 53,704 36,141
2011 CE 6,956 8,051 56,003 36,691
2012 CE 7,040 8,234 57,969 36,571
2013 CE 7,124 8,422 59,994 36,632
2014 CE 7,207 8,623 62,147 36,527
2015 CE 7,291 8,821 64,310 36,827
2016 CE 7,374 9,021 66,519 37,124
2017 CE 7,457 9,266 69,093 37,863
2018 CE 7,539 9,493 71,566 38,458
2019 CE 7,620 9,663 73,640 38,911
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Table 3. Diffusion fits to GWP 
 1 million BCE–2019 CE  10,000 BCE–2019 CE 
 

All observations 
Only decennial 
data after 1950 

 

All observations 
Only decennial 
data after 1950 

Primary estimation parameters      
ln 𝑎  –13.45 –12.62  –13.33 – 12.66 
 (0.186) (0.253)  (0.229) (0.281) 

𝑏  2.05 × 10−5 6.49 × 10−6  1.66 × 10−4 1.86 × 10−5 
 (5.19 × 10−6) (3.50 × 10−6)  (7.19 × 10−5) (6.87 × 10−5) 

𝜈  –51.75 –12.31  –93.80 – 23.78 
 (9.520) (4.019)  (16.38) (7.439) 

𝛾  –1.930 –1.588  –2.329 – 1.813 
 (0.103) (0.103)  (0.226) (0.162) 

Boundary type Absorbing Absorbing  Absorbing Absorbing 

Accessible boundary location 
(determined by sign of 𝛾) 

∞ ∞  ∞ ∞ 

Derived superexponential diffusion parameters     
𝑠  1.49 × 10−4 7.28 × 10−5  3.62 × 10−4 1.47 × 10−4 
 (2.81 × 10−5) (2.20 × 10−5)  (1.20 × 10−4) (5.83 × 10−5) 

𝐵  0.518 0.630  0.429 0.552 
 (0.0275) (0.0407)  (0.0416) (0.0492) 

𝛿  – 3.95 × 10−5 – 1.03 × 10−5  – 3.86 × 10−4 – 3.37 × 10−5 
 (1.15 × 10−5) (6.00 × 10−6)  (1.98 × 10−4) (1.27 × 10−4) 

𝜎  3.27 × 10−3 4.08 × 10−3  4.19 × 10−3 4.57 × 10−3 
 (4.35 × 10−4) (6.61 × 10−4)  (8.35 × 10−4) (9.21 × 10−4) 

𝜙𝐴 (returns elasticity for TFP)  –1.412 –0.959  –1.900 –1.261 
 (0.130) (0.144)  (0.267) (0.211) 

(Unstable) steady state (billion $) 0.0771 0.0448  1.158 0.0690 
(0.0246) (0.0270)  (0.688) (0.425) 

P[no eventual explosion | 
initial GWP]  

0.978 0.611  0.146 1.63 × 10–10 
(0.0718) (0.506)  (0.554) (1.06 × 10−8) 

Median predicted explosion year |  
initial GWP 

∞ ∞  3620 1527 
   (8413) (3263) 

P[no eventual explosion | 
final GWP]  

5.00 × 10–139 7.32 × 10–44  3.79 × 10–154 8.36 × 10–70 
(3.14 × 10–137) (2.36 × 10–42)  (2.43 × 10–152) (4.02 × 10–68) 

Median predicted explosion year |  
final GWP 

2060 2041  2073 2047 
(9.117) (6.559)  (14.09) (8.122) 

Likelihood ratio test: CEV model (exponential growth)      
𝜒2(1)  39.50 62.92  57.93 61.72 
𝑝  0.000 0.000  0.000 0.000 

Goodness of fit: quantiles of observations in predicted distributions i.i.d. uniform  

Kolmogorov-Smirnov (𝑝) 0.000 0.488  0.005 0.489 
No serial correlation (𝑝)  0.000 0.003  0.000 0.007 

Observations 100 38  97 35 

Notes: In columns 2 and 4, post-1950 observations are decennial rather than annual, except that the 2019 observa-
tion is retained. Results are maximum likelihood estimates using a diffusion model corresponding to the stochastic 

differential equation 𝑑𝑋𝑡 = (𝑏𝑋𝑡 + 𝑐)𝑑𝑡 + √2𝑎𝑋𝑑𝑊𝑡  with 𝑌𝑡 = 𝑋𝑡
𝛾

 representing GWP and 𝜈 ≔ 𝑐 𝑎⁄ − 1. Estimates of 
the superexponential diffusion parameters 𝑠, 𝐵, 𝛿, and 𝜎 are then derived according to footnote 35. 𝜙𝐴 = 𝐵 − 1 𝐵⁄  is 

the estimated scale effect in spending on innovation. “Steady state” is the level of zero drift, (− 𝛿 𝑠⁄ )1 𝐵⁄ . Formulas 
for the probability of no eventual explosion and median wait till explosion are in the text. Likelihood ratio test is for 
the restriction to the constant-elasticity-of-variance model, which has 𝑠 = 0, for exponential growth. Kolmogorov-
Smirnov test is for the hypothesis that the quantiles of observations in predicted distributions are uniformly dis-
tributed. Standard errors in parentheses; those for derived quantities computed with the delta method. Observa-
tions weighted for precision as described in section 4. 

 

Table 4. Diffusion fits to GWP, population, GWP/capita, and France GDP/capita series, 10,000 BCE–2019, decennial 
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observations after 1950 
 

GWP (billion $) 
Population (mil-

lion people) GWP/capita ($) 
France GDP/capita 

($) 
Primary estimation parameters     
ln 𝑎  – 12.66 – 13.69 – 19.32 – 15.24 
 (0.281) (0.308) (1.910) (1.739) 

𝑏  1.86 × 10−5 2.09 × 10−5 2.91 × 10−4 2.82 × 10−4 
 (6.87 × 10−5) (5.91 × 10−5) (4.13 × 10−4) (3.73 × 10−4) 

𝜈  – 23.78 – 39.30 – 4.810 – 4.520 
 (7.439) (12.06) (3.967) (3.572) 

𝛾  – 1.813 – 1.793 – 0.589 – 1.058 
 (0.162) (0.218) (0.116) (0.293) 

Boundary type Absorbing Absorbing Absorbing Absorbing 
Accessible boundary location 

(determined by sign of 𝛾) 
∞ ∞ ∞ ∞ 

     
Derived superexponential diffusion parameters    
𝑠  1.47 × 10−4 8.32 × 10−5 1.30 × 10–8 1.42 × 10−6 
 (5.83 × 10−5) (3.98 × 10−5) (3.56 × 10–8) (3.28 × 10−6) 

𝐵  0.552 0.558 1.699 0.945 
 (0.0492) (0.0679) (0.335) (0.262) 

𝛿  – 3.37 × 10−5 – 3.74 × 10−5 – 1.71 × 10−4 – 2.99 × 10−4 
 (1.27 × 10−4) (1.09 × 10−4) (2.71 × 10−4) (4.32 × 10−4) 

𝜎  4.57 × 10−3 2.69 × 10−3 5.31 × 10−5 7.34 × 10−4 
 (9.21 × 10−4) (6.77 × 10−4) (6.13 × 10−5) (8.38 × 10−4) 

(Unstable) steady state (billion $) 0.0690 0.238 266.3 287.6 
(0.425) (1.067) (133.0) (288.2) 

P[no eventual explosion | 
initial GWP]  

1.63 × 10–10 1.51 × 10–14 0.160 0.172 
(1.06 × 10−8) (2.43 × 10–13) (0.310) (0.334) 

Median predicted explosion year | initial 
GWP 

1527 1831 6822 BCE 6674 BCE 
(3263) (2695) (1725) (2005) 

P[no eventual explosion | 
final GWP]  

8.36 × 10–70 6.62 × 10–83 6.75 × 10–12 3.31 × 10–8 
(4.02 × 10–68) (3.75 × 10–81) (9.13 × 10–11) (3.31 × 10–7) 

Median predicted explosion year | final 
GWP 

2047 2175 2028 2065 
(8.122) (47.60) (5.044) (43.11) 

Likelihood-ratio test: CEV model (exponential growth)     
𝜒2(1)  61.72 41.64 44.02 5.780 
𝑝  0.000 0.000 0.000 0.016 

Goodness of fit: quantiles of observations in predicted distributions i.i.d. uniform   

Kolmogorov-Smirnov (𝑝) 0.489 0.795 0.019 0.426 

No serial correlation (𝑝)  0.007 0.000 0.050 0.0467 

Observations 35 37 35 21 

Notes: See notes to Table 3. 
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Figure 1. Gross world product, 10,000 BCE–2019 (billion $ of 1990) 

 
Note: Section 4 documents the construction of this data series. 
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Figure 2. U.S. gross domestic product per capita, 1820–2016 ($ of 2011) 

 
Source: Bolt et al. (2018). 
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Figure 3. Factor stocks and output in simulated, fully endogenous Cobb-Douglas economy, two scenarios with 
slightly different starting points 

 
Note: Plots are based on simulations of the economy in (9) and (10). Time increment in simulations is 2 × 10−5. Initial pop-
ulation, 𝑃0, is 1 in both scenarios. In the exploding one, 𝐴0 = 𝐾0 = 𝐻0 = 0.03117. In the other, 𝐴0 = 𝐾0 = 𝐻0 = 0.03107. 
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Figure 4. Plots of 𝒇±𝝌𝟐(𝒙; 𝝀, 𝝂) for 𝝀 = 𝟏, 𝝂 = −𝟑. 𝟎, −𝟐. 𝟓, … ,+𝟑. 𝟎 

 
Notes: For each value of 𝜈, 𝑓𝜒2 and 𝑓−𝜒2  have the same color. When 𝜈 is an integer, the two coincide. Otherwise, 𝑓𝜒2 is marked 

by short dashes and 𝑓−𝜒2 by solid lines. Point mass accumulations at 𝑥 = 0 under 𝑓−𝜒2  are not depicted. 𝑓𝜒2 is a valid probabil-

ity distribution for 𝜈 ≥ −1, as is 𝑓−𝜒2  for 𝜈 ≤ 0. 
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Figure 5. Feller/CIR diffusion 𝒇
±𝝌𝟐
∗ (𝑿𝒕; 𝑿𝟎, 𝒕, 𝒂, 𝒃, 𝝂) for 𝝂 = −𝟏. 𝟓, −𝟎. 𝟓, +𝟎. 𝟓, with 𝑿𝟎 = 𝒂 = 𝟏, 𝒃 = −𝟏 

 
Notes: The absorbing- and reflecting-boundary solutions are 𝑓−𝜒2

∗  and 𝑓𝜒2
∗ . In each plot, the horizontal coordinate is time, 𝑡, and the vertical is 

𝑋𝑡 . Dark purple indicates the lowest densities and yellow the highest. White lines show the evolution of, from upper to lower, the mean, me-
dian, and mode. But the mode is not defined and not plotted for the diffusion with unbounded density approaching zero. Plots are omitted 
for cases that do not yield proper diffusions. Point accumulations at 𝑋𝑡 = 0 boundary, when it is absorbing, are not depicted because their 
densities are infinite. 
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Figure 6. Distribution of nonlinear least squares and maximum likelihood estimates of 𝑩 in 10,000 Monte Carlo simu-
lations 

 
Notes: The figure shows the distribution of estimates of 𝐵 in (28) from nonlinear least squares as well as maximum likelihood fitting of the 
diffusion model. The true value of 𝐵 in the simulated data sets is 0.552. Each data set is built from a sample path generated with the Euler-
Maruyama method for the process (31) with parameter values as estimated in Table 3, column 4; and with a starting value of $1.6 billion, the 
GWP level for 10,000 BCE. Each path terminates when it reaches $100 trillion or 25,000 years. Paths are sampled to mimic the empirical 
series in number and relative spacing of observations. 



49 
  

Figure 7. 99 rollouts from the diffusion model fit to GWP, 1 million BCE–2019 CE  

 
Notes: Historical series in red. Simulations conducted with the Euler-Maruyama method with 100,000 time steps. 
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Figure 8. Distribution of 10,000 rollouts from the diffusion model for GWP, starting from both initial and final GWP 
values, incorporating modeled stochasticity and estimation uncertainty, 1 million BCE–2019 

 

Notes: Grey bands indicate 5th, 10th, etc., quantiles of the distribution of 10,000 simulations, each starting from the initial or final values of 
the series. See also notes to previous figure. 
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Figure 9. 99 rollouts from the diffusion model for GWP for 10,000 BCE–2019 CE, with decennial observations after 
1950 

 
Notes: See Figure 7. 
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Figure 10. Distribution of 10,000 rollouts from the diffusion model for GWP, starting from both initial and final val-
ues, incorporating modeled stochasticity and modeling uncertainty, 10,000 BCE–2019 CE 

 
Notes: See Figure 8. 
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Figure 11. Quantiles of each GWP observations in distribution conditioned on previous observation, using parame-
ters from preferred model fit (Table 3, col. 4) 
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Figure 12. Quantiles of GWP observations in distribution conditioned on previous observation, using parameters 
from diffusion model fit to previous observations only, incorporating modeled stochasticity as well as modeling 
uncertainty 
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Figure 13. Diffusion and quantile plots for diffusion fits to world population, GWP/capita, and GDP/capita in France, 
10,000 BCE–2019 CE 

 
Note: Figures on the left and right constructed the same in the same ways as Figure 10 and Figure 11, respectively. For 5000 and 10,000 BCE, 
GDP/capita figures for “France” are the same as for the world. 
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Figure 14. Factor stocks and output in simulated fully endogenous Cobb-Douglas economy with dynamics in re-
sources 
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A. Online Appendix: Derivation of formulas in sections 2.2 and 2.3 

This appendix presents the algebra behind (16)–(18) and the computation of the equilibrium growth 

rate in the partially endogenous model and the conditions for its stability. 

A.1. Determinant of −𝑩 

We will need identities to compute the determinant and inverse of a matrix that is zero except in its di-

agonal and first column. Let 𝐜 and 𝐝 be column vectors and ⟦𝐜⟧ be defined as in (13). Since 

diag(𝐝) − ⟦𝐜⟧ = [

𝑑0 − 𝑐0 0 … 0
−𝑐1 𝑑1 … 0
⋮ ⋮ ⋱ ⋮
−𝑐𝑘 0 … 𝑑𝑘

], 

it is immediate that 

 |diag(𝐝) − ⟦𝐜⟧| = (𝑑0 − 𝑐0)∏𝑑𝑖
𝑖>0

. (42) 

And it can be checked by matrix multiplication that 

(diag(𝐝) − ⟦𝐜⟧)−1 =

[
 
 
 
 
 
 
 

1

𝑑0 − 𝑐0
0 … 0

1

𝑑0 − 𝑐0

𝑐1
𝑑1

1

𝑑1
… 0

⋮ ⋮ ⋱ ⋮
1

𝑑0 − 𝑐0

𝑐𝑘
𝑑𝑘

0 …
1

𝑑𝑘]
 
 
 
 
 
 
 

=
1

𝑑0 − 𝑐0
⟦
𝐜

𝐝
⟧ + diag (

𝜾

𝐝
) 

 

(43) 

Define 𝐀 ≔ 𝐈 −𝚽 = 𝐈 − ⟦𝝓⟧, where, recall, 𝝓 holds the elasticities of reinvestment with respect to the 

technology level. Then by (13), 𝐁 = 𝜾𝜶′ − 𝐀. Applying (42) and (43), 

|𝐀| = 1 − 𝜙0 

𝐀−1 = 𝐈 +
1

1 − 𝜙0
𝚽 (44) 

adj(𝐀) = |𝐀|𝐀−1 = (1 − 𝜙0)𝐈 + 𝚽 

Note that if technology has no role in the system, so that 𝐀 = 𝐈, then the above formulas will be correct if we take 

𝝓 = 𝟎. 

By the matrix determinant lemma, 
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|−𝐁| = |𝐈 − 𝚽− 𝜾𝜶′| 

= |𝐀 − 𝜾𝜶′| 

= |𝐀| − 𝜶′ adj(𝐀) 𝜾 

= 1 − 𝜙0 −𝜶
′[(1 − 𝜙0)𝐈 + 𝚽]𝜾 

= 1 − 𝜙0 −𝜶
′𝚽𝜾 − (1 − 𝜙0)𝜶

′𝜾 

= (1 − 𝜙0)(1 − 𝜶
′𝜾) − 𝜶′𝝓 

(45) 

Since 𝜙0 means 𝜙𝐴, this confirms the characterization of −|−𝐁| in (16). 

A.2. Eigenvalues and eigenvectors of 𝑩 in the single-output model 

We develop the characteristic equation for 𝐁: 

0 = |𝜆𝐈 − 𝐁| = |(1 + 𝜆)𝐈 − 𝜾𝜶′ −𝚽| = (1 + 𝜆)𝑘+1 |𝐈 −
𝚽

1 + 𝜆
− 𝜾

𝜶′

1 + 𝜆
|. 

The determinant in the last expression is the same as that in (45), but with 𝚽 and 𝜶 pre-divided by 1 + 𝜆. So this 

determinant equals the last line of (45) but with the same divisions applied. The characteristic equation be-

comes 

0 = (1 + 𝜆)𝑘+1 [(1 −
𝜙0
1 + 𝜆

)(1 −
𝜶′𝜾

1 + 𝜆
) −

𝜶′𝝓

(1 + 𝜆)2
] 

= (1 + 𝜆)𝑘−1[(1 + 𝜆 − 𝜙0)(1 + 𝜆 − 𝜶
′𝜾) − 𝜶′𝝓] 

= (1 + 𝜆)𝑘−1[(1 + 𝜆)2 − (𝜶′𝜾 + 𝜙0)(1 + 𝜆) + 𝜙0𝜶
′𝜾 − 𝜶′𝝓]. 

 

(46) 

The roots of the quadratic subexpression are 

𝜆± = −1+
𝜶′𝜾 + 𝜙0

2
± √(

𝜶′𝜾 + 𝜙0
2

)
2

− 𝜙0𝜶′𝜾 + 𝜶′𝝓 = −1+ 𝜙0 +
𝜶′𝜾 − 𝜙0

2
±√(

𝜶′𝜾 − 𝜙0
2

)
2

+ 𝜶′𝝓. 

Exactly one of these roots is positive when 

|−1 + 𝜙0 +
𝜶′𝜾 − 𝜙0

2
| < √(

𝜶′𝜾 − 𝜙0
2

)
2

+𝜶′𝝓 

We successively restate that: 

(−1 + 𝜙0 +
𝜶′𝜾 − 𝜙0

2
)

𝟐

< (
𝜶′𝜾 − 𝜙0

2
)

2

+ 𝜶′𝝓 

(𝜙0 − 1)
𝟐 + (𝜙0 − 1)(𝜶

′𝜾 − 𝜙0) + (
𝜶′𝜾 − 𝜙0

2
)

𝟐

< (
𝜶′𝜾 − 𝜙0

2
)

2

+ 𝜶′𝝓 

(𝜙0 − 1)
𝟐 + (𝜙0 − 1)(𝜶

′𝜾 − 𝜙0) < 𝜶
′𝝓 

(𝜙0 − 1)(𝜙0 − 1 + 𝜶
′𝜾 − 𝜙0) < 𝜶

′𝝓 

(𝜙0 − 1)(𝜶
′𝜾 − 1) < 𝜶′𝝓 

−|−𝐁| > 0 

The last line uses (45). This confirms the characterization of the eigenvalues in and near (23). 



59 
  

Next we confirm that eigenvectors corresponding to 𝜆± are 𝐯± ≔ 𝝓+ (𝜆± + 1 − 𝜙0)𝜾. For clarity, pick 

one of 𝜆± and define 𝜅 ≔ 1+ 𝜆±. By (46), 𝜅 satisfies 

𝜅2 − 𝜅(𝜶′𝜾 + 𝜙0) + 𝜙0𝜶
′𝜾 − 𝜶′𝝓 = 0. 

It follows that 

(𝐈 + 𝐁)𝐯± − 𝜅𝐯± = (𝜾𝜶
′ + ⟦𝝓⟧)(𝝓+ (𝜅 − 𝜙0)𝜾) − 𝜅(𝝓 + (𝜅 − 𝜙0)𝜾) 

= 𝜾𝜶′𝝓+ (𝜅 − 𝜙0)𝜾𝜶
′𝜾 + ⟦𝝓⟧𝝓+ ⟦𝝓⟧(𝜅 − 𝜙0)𝜾 − 𝜅𝝓 − 𝜅

2𝜾 + 𝜅𝜙0𝜾 

= 𝜾𝜶′𝝓+ (𝜅 − 𝜙0)𝜾𝜶
′𝜾 + 𝜙0𝝓+ (𝜅 − 𝜙0)𝝓 − 𝜅𝝓− 𝜅

2𝜾 + 𝜅𝜙0𝜾 

= 𝜾𝜶′𝝓+ (𝜅 − 𝜙0)𝜾𝜶
′𝜾 − 𝜅2𝜾 + 𝜅𝜙0𝜾 

= [𝜶′𝝓+ (𝜅 − 𝜙0)𝜶
′𝜾 − 𝜅2 + 𝜅𝜙0]𝜾 

= 0𝜾 

Thus 𝐯±is an eigenvector of 𝐈 + 𝐁 corresponding to eigenvalue 𝜅, and an eigenvector of 𝐁 corresponding to 𝜅 −

1 = 𝜆±. 

A.3. The characteristic equation of −𝛅 ∘ 𝑩 

By (13), 

−𝜹 ∘ 𝐁 = 𝜹 ∘ 𝐈 − 𝜹 ∘ 𝚽 − 𝜹 ∘ 𝜾𝜶′ 

= diag(𝜹) − ⟦𝜹 ∘ 𝝓⟧ − 𝜹𝜶′. 

The characteristic equation of this matrix can be written 

0 = |diag(𝜹 − 𝜆𝜾) − ⟦𝜹 ∘ 𝝓⟧ − 𝜹𝜶′|. 

Applying the matrix determinant lemma and the determinant and adjoint identities (42) and (43), 

0 = |diag(𝜹 − 𝜆𝜾) − ⟦𝜹 ∘ 𝝓⟧ − 𝜹𝜶′| 

= (1 − 𝜶′(diag(𝜹 − 𝜆𝜾) − ⟦𝜹 ∘ 𝝓⟧)−1𝜹) ⋅ |diag(𝜹 − 𝜆𝜾) − ⟦𝜹 ∘ 𝝓⟧| 

= (1 − 𝜶′ (
1

𝛿0 − 𝜆 − 𝛿0𝜙0
⟦
𝜹 ∘ 𝝓

𝜹 − 𝜆𝜾
⟧ + diag (

𝜾

𝜹 − 𝜆𝜾
)) 𝜹) ⋅ (𝛿0 − 𝜆 − 𝛿0𝜙0) ⋅∏(𝛿𝑖 − 𝜆)

𝑖>0

 

= (1 − 𝜶′ (
𝜹

𝜹 − 𝜆𝜾
∘ (

𝛿0
𝛿0(1 − 𝜙0) − 𝜆

𝝓 + 𝜾))) ⋅ (𝛿0(1 − 𝜙0) − 𝜆) ⋅∏(𝛿𝑖 − 𝜆)

𝑖>0

 

Because the second and third factors appear in the denominators of the first factors, the right side can only be 0 

by virtue of the second and third factors being 0 if 𝜆 is at least a double root of ∏ (𝛿𝑖 − 𝜆)𝑖>0 . For example, if 𝛿1 =

𝛿2, then 𝜆 = 𝛿1 = 𝛿2 would be a root. However, an infinitesimal change in the elements of 𝜹 could break such 

solutions. 

For non-degenerate solution, we drop the second and third terms. The characteristic equation distills to 

1 = 𝜶′ (
𝜹

𝜹 − 𝜆𝜾
∘ (𝜾 +

𝛿0
𝛿0(1 − 𝜙0) − 𝜆

𝝓)) 

If 𝜹 is entirely non-zero, this can be written somewhat more intuitively as 
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1 = 𝜶′

(

 
 𝜾

𝜾 +
𝜆
−𝜹

∘ (𝜾 +
𝝓

1 +
𝜆
−𝛿0

− 𝜙0

)

)

 
 

 

= (
𝜶

𝜾 +
𝜆
−𝜹

)

′

(𝜾 +
𝝓

1 +
𝜆
−𝛿𝐴

− 𝜙𝐴

). 

This is (18). 

A.4. Steady-state growth in the partially endogenous model 

The equations for the equilibrium growth rates take somewhat different form when technology is an 

exogenous factor than when it is endogenous. 

If technology is exogenous, 𝚽𝑒𝑛,𝑒𝑛 = 𝟎, 𝐁𝑒𝑛,𝑒𝑛 = 𝜾𝑒𝑛𝜶𝑒𝑛
′ − 𝐈𝑒𝑛,𝑒𝑛, and 𝐁𝑒𝑛,𝑒𝑥 = 𝜾𝑒𝑛𝜶𝑒𝑥

′ +𝚽𝑒𝑛,𝑒𝑥. By the 

Sherman-Morrison formula, 

−𝐁𝑒𝑛,𝑒𝑛
−1 = 𝐈𝑒𝑛,𝑒𝑛 +

𝜾𝑒𝑛𝜶𝑒𝑛
′

1 − 𝜶𝑒𝑛′ 𝜾𝑒𝑛
. 

So the growth rates of endogenous factors are 

𝐳𝑒𝑛
∗ = −𝐁𝑒𝑛,𝑒𝑛

−1 𝐁𝑒𝑛,𝑒𝑥𝜹𝑒𝑥 

= (𝐈𝑒𝑛,𝑒𝑛 +
𝜾𝑒𝑛𝜶𝑒𝑛

′

1 − 𝜶𝑒𝑛′ 𝜾𝑒𝑛
)(𝜾𝑒𝑛𝜶𝑒𝑥

′ +𝚽𝑒𝑛,𝑒𝑥)𝜹𝑒𝑥 

= (𝐈𝑒𝑛,𝑒𝑛 +
𝜾𝑒𝑛𝜶𝑒𝑛

′

1 − 𝜶𝑒𝑛′ 𝜾𝑒𝑛
) (𝜾𝑒𝑛𝜶𝑒𝑥

′ 𝜹𝑒𝑥 + 𝛿0𝝓𝑒𝑛) 

= 𝜾𝑒𝑛𝜶𝑒𝑥
′ 𝜹𝑒𝑥 + 𝛿0𝝓𝑒𝑛 +

𝜶𝑒𝑛
′ 𝜾𝑒𝑛𝜶𝑒𝑥

′ 𝜹𝑒𝑥 + 𝛿0𝜶𝑒𝑛
′ 𝝓𝑒𝑛

1 − 𝜶𝑒𝑛′ 𝜾𝑒𝑛
𝜾𝑒𝑛 

= 𝛿0𝝓𝑒𝑛 +
𝜶𝑒𝑥
′ 𝜹𝑒𝑥(1 − 𝜶𝑒𝑛

′ 𝜾𝑒𝑛) + 𝜶𝑒𝑛
′ 𝜾𝑒𝑛𝜶𝑒𝑥

′ 𝜹𝑒𝑥 + 𝛿0𝜶𝑒𝑛
′ 𝝓𝑒𝑛

1 − 𝜶𝑒𝑛′ 𝜾𝑒𝑛
𝜾𝑒𝑛 

= 𝛿0𝝓𝑒𝑛 +
𝛿0𝜶𝑒𝑛

′ 𝝓𝑒𝑛 +𝜶𝑒𝑥
′ 𝜹𝑒𝑥

1 − 𝜶𝑒𝑛′ 𝜾𝑒𝑛
𝜾𝑒𝑛. 

Output growth is 

𝑍∗ = 𝜶𝑒𝑛
′ 𝐳𝑒𝑛

∗ +𝜶𝑒𝑥
′ 𝐳𝑒𝑥

∗  

= 𝜶𝑒𝑛
′ (𝛿0𝝓𝑒𝑛 +

𝛿0𝜶𝑒𝑛
′ 𝝓𝑒𝑛 + 𝜶𝑒𝑥

′ 𝜹𝑒𝑥
1 − 𝜶𝑒𝑛′ 𝜾𝑒𝑛

𝜾𝑒𝑛) + 𝜶𝑒𝑥
′ 𝜹𝑒𝑥 

= 𝛿0𝜶𝑒𝑛
′ 𝝓𝑒𝑛 +

𝜶𝑒𝑛
′ 𝜾𝑒𝑛(𝛿0𝜶𝑒𝑛

′ 𝝓𝑒𝑛 +𝜶𝑒𝑥
′ 𝜹𝑒𝑥)

1 − 𝜶𝑒𝑛′ 𝜾𝑒𝑛
+ 𝜶𝑒𝑥

′ 𝜹𝑒𝑥 

=
𝛿0𝜶𝑒𝑛

′ 𝝓𝑒𝑛 + 𝜶𝑒𝑥
′ 𝜹𝑒𝑥

1 − 𝜶𝑒𝑛′ 𝜾𝑒𝑛
. 

On the other hand, if technology is endogenous, 

𝐁𝑒𝑛,𝑒𝑛 = 𝐀𝑒𝑛,𝑒𝑛 = 𝐈𝑒𝑛,𝑒𝑛 −𝚽𝑒𝑛,𝑒𝑛 

The inverse formula (44) for 𝐀 carries over mutatis mutandis: 
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𝐀𝑒𝑛,𝑒𝑛
−1 = 𝐈𝑒𝑛,𝑒𝑛 +

1

1 − 𝜙0
𝚽𝑒𝑛,𝑒𝑛 

Again using the Sherman-Morrison formula, 

−𝐁𝑒𝑛,𝑒𝑛
−1 = (𝐀𝑒𝑛,𝑒𝑛 − 𝜾𝑒𝑛𝜶𝑒𝑛

′ )
−1

 

= 𝐀𝑒𝑛,𝑒𝑛
−1 +

𝐀𝑒𝑛,𝑒𝑛
−1 𝜾𝑒𝑛𝜶𝑒𝑛

′ 𝐀𝑒𝑛,𝑒𝑛
−1

1 − 𝜶𝑒𝑛
′ 𝐀𝑒𝑛,𝑒𝑛

−1 𝜾𝑒𝑛
 

= 𝐈𝑒𝑛,𝑒𝑛 +
𝚽𝑒𝑛,𝑒𝑛

1 − 𝜙0
+
(𝐈𝑒𝑛,𝑒𝑛 +

𝚽𝑒𝑛,𝑒𝑛

1 − 𝜙0
) 𝜾𝑒𝑛𝜶𝑒𝑛

′ (𝐈𝑒𝑛,𝑒𝑛 +
𝚽𝑒𝑛,𝑒𝑛

1 − 𝜙0
)

1 − 𝜶𝑒𝑛
′ (𝐈𝑒𝑛,𝑒𝑛 +

𝚽𝑒𝑛,𝑒𝑛

1 − 𝜙0
) 𝜾𝑒𝑛

 

= 𝐈𝑒𝑛,𝑒𝑛 +
𝚽𝑒𝑛,𝑒𝑛

1 − 𝜙0
+
(𝜾𝑒𝑛 +

𝝓𝑒𝑛
1 − 𝜙0

) (𝜶𝑒𝑛
′ +

𝜶𝑒𝑛
′ 𝚽𝑒𝑛,𝑒𝑛

1 − 𝜙0
)

1 − 𝜶𝑒𝑛
′ 𝜾𝑒𝑛 −

𝜶𝑒𝑛
′ 𝝓𝑒𝑛
1 − 𝜙0

. 

Meanwhile, since now 𝚽𝑒𝑛,𝑒𝑥 = 𝟎, 

𝐁𝑒𝑛,𝑒𝑥 = 𝜾𝑒𝑛𝜶𝑒𝑥
′ . 

Combining, 

𝐳𝑒𝑛
∗ = −𝐁𝑒𝑛,𝑒𝑛

−1 𝐁𝑒𝑛,𝑒𝑥𝜹𝑒𝑥 

= (𝐈𝑒𝑛,𝑒𝑛 +
𝚽𝑒𝑛,𝑒𝑛

1 − 𝜙0
+
(𝜾𝑒𝑛 +

𝝓𝑒𝑛
1 − 𝜙0

) (𝜶𝑒𝑛
′ +

𝜶𝑒𝑛
′ 𝚽𝑒𝑛,𝑒𝑛

1 − 𝜙0
)

1 − 𝜶𝑒𝑛′ 𝜾𝑒𝑛 −
𝜶𝑒𝑛′ 𝝓𝑒𝑛
1 − 𝜙0

)𝜾𝑒𝑛𝜶𝑒𝑥
′ 𝜹𝑒𝑥 

= 𝜶𝑒𝑥
′ 𝜹𝑒𝑥𝜾𝑒𝑛 +

𝜶𝑒𝑥
′ 𝜹𝑒𝑥𝝓𝑒𝑛
1 − 𝜙0

+
(𝜾𝑒𝑛 +

𝝓𝑒𝑛
1 − 𝜙0

) (𝜶𝑒𝑛
′ 𝜾𝑒𝑛 +

𝜶𝑒𝑛
′ 𝝓𝑒𝑛
1 − 𝜙0

)𝜶𝑒𝑥
′ 𝜹𝑒𝑥

1 − 𝜶𝑒𝑛′ 𝜾𝑒𝑛 −
𝜶𝑒𝑛′ 𝝓𝑒𝑛
1 − 𝜙0

 

=
(𝜾𝑒𝑛 +

𝝓𝑒𝑛
1 − 𝜙0

) (1 − 𝜶𝑒𝑛
′ 𝜾𝑒𝑛 −

𝜶𝑒𝑛
′ 𝝓𝑒𝑛
1 − 𝜙0

)𝜶𝑒𝑥
′ 𝜹𝑒𝑥 + (𝜾𝑒𝑛 +

𝝓𝑒𝑛
1 − 𝜙0

) (𝜶𝑒𝑛
′ 𝜾𝑒𝑛 +

𝜶𝑒𝑛
′ 𝝓𝑒𝑛
1 − 𝜙0

)𝜶𝑒𝑥
′ 𝜹𝑒𝑥

1 − 𝜶𝑒𝑛′ 𝜾𝑒𝑛 −
𝜶𝑒𝑛′ 𝝓𝑒𝑛
1 − 𝜙0

 

=
𝜾𝑒𝑛 +

𝝓𝑒𝑛
1 − 𝜙0

1 − 𝜶𝑒𝑛′ 𝜾𝑒𝑛 −
𝜶𝑒𝑛′ 𝝓𝑒𝑛
1 − 𝜙0

𝜶𝑒𝑥
′ 𝜹𝑒𝑥 . 

𝑍∗ = 𝜶𝑒𝑛
′ 𝐳𝑒𝑛

∗ + 𝜶𝑒𝑥
′ 𝐳𝑒𝑥

∗  

= 𝜶𝑒𝑛
′ (

𝜾𝑒𝑛 +
𝝓𝑒𝑛
1 − 𝜙0

1 − 𝜶𝑒𝑛′ 𝜾𝑒𝑛 −
𝜶𝑒𝑛′ 𝝓𝑒𝑛
1 − 𝜙0

𝜶𝑒𝑥
′ 𝜹𝑒𝑥)+ 𝜶𝑒𝑥

′ 𝜹𝑒𝑥 

=
𝜶𝑒𝑛
′ 𝜾𝑒𝑛 +

𝜶𝑒𝑛
′ 𝝓𝑒𝑛
1 − 𝜙0

1 − 𝜶𝑒𝑛′ 𝜾𝑒𝑛 −
𝜶𝑒𝑛′ 𝝓𝑒𝑛
1 − 𝜙0

𝜶𝑒𝑥
′ 𝜹𝑒𝑥 + 𝜶𝑒𝑥

′ 𝜹𝑒𝑥 

=
𝜶𝑒𝑥
′ 𝜹𝑒𝑥

1 − 𝜶𝑒𝑛′ 𝜾𝑒𝑛 −
𝜶𝑒𝑛′ 𝝓𝑒𝑛
1 − 𝜙0
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=
𝜶𝑒𝑥
′ 𝜹𝑒𝑥(1 − 𝜙0)

−(𝜶𝑒𝑛
′ 𝝓𝑒𝑛 + (1 − 𝜙0)𝜶𝑒𝑛

′ 𝜾𝑒𝑛)
. 

Using (21), the results for output growth can be consolidated as 

𝑍∗ =
1

|−𝐁𝑒𝑛,𝑒𝑛|
⋅ {
𝜶𝑒𝑥
′ 𝜹𝑒𝑥 + 𝛿𝐴𝜶𝑒𝑛

′ 𝝓𝑒𝑛 if technology is exogenous

𝜶𝑒𝑥
′ 𝜹𝑒𝑥(1 − 𝜙𝐴) if technology is endogenous

 (47) 

If the sufficient condition for instability (21) holds, then the denominator in (47) is negative. For positive 

growth, the numerators must be negative too, which would require, in the exogenous case, that 𝜶𝑒𝑛
′ 𝝓𝑒𝑛 be ade-

quately large and negative (technological growth substantially damps investment in endogenous factors); in the 

endogenous case, 𝜙𝐴 > 1 (returns to R&D are strongly increasing). Conceding those restrictions results in a pic-

ture of a system that operates in one of two main modes, depending on the prominence of exogenous factors in 

production. With enough exogeneity, as in the Solow-Swan model, the equilibrium growth rate is positive and 

stable. Otherwise it is negative and unstable. 

B. Online Appendix: Confirming and characterizing the solutions of the 

Feller/CIR diffusion 

The reflecting- and absorbing-barrier solutions for the Feller/CIR diffusion mentioned in section 3.1 are 

long-established. However, available derivations and confirmations of the solutions are complex and do not treat 

the two and a unified way. This appendix aims to confirm that the asserted solutions indeed satisfy the corre-

sponding Kolmogorov forward equation, and derive some of their properties, using little more than ordinary 

calculus. 

B.1. Problem 

We aim to inventory the solutions of the stochastic differential equation, 

𝑑𝑋𝑡 = (𝑏𝑋𝑡 + 𝑐)𝑑𝑡 + √2𝑎𝑋𝑡𝑑𝑊𝑡 (48) 

where 𝑎 > 0 and 𝑊𝑡 is standard Brownian (Wiener) motion. The process is singular at 𝑋𝑡 = 0, in that the second 

(diffusion) term in vanishes there. By “inventory solutions,” I mean to state the transition densities compatible 

with this stochastic equation of motion as well as with associated Markovian boundary conditions. 

The corresponding Kolmogorov forward equation, which Feller (1951b) studies, is 

𝜕𝑢

𝜕𝑡
= −

𝜕

𝜕𝑋
((𝑏𝑋 + 𝑐)𝑢) +

𝜕2

𝜕𝑋2
(𝑎𝑋𝑢),  

in which 𝑢(𝑡, 𝑋) is the transition probability density at time 𝑡 conditional on a starting value 𝑋0. As a general 

matter, the first-order term captures the effect on the time derivative of the density of the deterministic compo-

nent of the SDE and the second-order term the effect of random diffusion. Put another way, 

𝜕𝑢

𝜕𝑡
= −

𝜕𝐽

𝜕𝑋
 (49) 

where 
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𝐽 ≔ (𝑏𝑋 + 𝑐)𝑢 −
𝜕

𝜕𝑋
(𝑎𝑋𝑢) 

= (𝑎𝜈 + 𝑏𝑋)𝑢 − 𝑎𝑋
𝜕𝑢

𝜕𝑋
 

(50) 

with 𝜈 ≔ 𝑐 𝑎⁄ − 1. 𝐽(𝑡, 𝑋) is the flux of the diffusion. 

B.2. Reducing the problem 

Just as the transformation 𝑌𝑡 = 𝑋𝑡
−1 𝐵⁄  reduces the four-parameter diffusion (31) to the three-parameter 

Feller/CIR (48), further transformations can reduce the Feller/CIR to a one-parameter model, the half squared 

Bessel process (Göing-Jaeschke and Yor 2003).37 First, we normalize scale in (48) by dividing 𝑋𝑡 by 𝑎. Second, 

we observe this SDE’s tendency to exponential growth or decay—for the sake of exposition, assume growth—

which is governed by the drift term 𝑏𝑋𝑡𝑑𝑡. A second rescaling, by 𝑒−𝑏𝑡, might remove that. To combine these 

steps, we define a new stochastic variable: 

𝑍𝑡 ≔
𝑒−𝑏𝑡

𝑎
𝑋𝑡 (51) 

Differentiating both sides of that with ordinary calculus gives 

𝑑𝑍𝑡 =
𝑒−𝑏𝑡

𝑎
(𝑑𝑋𝑡 − 𝑏𝑋𝑡𝑑𝑡). 

Substituting those two equations into (48) and rearranging, 

𝑑𝑍𝑡 = �̃�𝑒
−𝑏𝑡𝑑𝑡 + √2𝑍𝑡𝑒−𝑏𝑡𝑑𝑊𝑡 , with �̃� ≔ 𝑐 𝑎⁄ . (52) 

The rescaling indeed simplifies by removing the variance coefficient 𝑎 and the exponential growth term 

𝑏𝑋𝑡𝑑𝑡. But it complicates by introducing exponential decay into both the drift coefficient (�̃�𝑒−𝑏𝑡) and the vari-

ance of the diffusion term (2𝑍𝑡𝑒
−𝑏𝑡). Yet since the cumulative variance of a Wiener process equals elapsed time, 

these two appearances of 𝑒−𝑏𝑡 are jointly equivalent to a time change (Oksendal 2013, Theorem 8.5.7).38 That is, 

to observe the evolution of sample paths according to (52) is equivalent to observing paths according to (52) 

with the 𝑒−𝑏𝑡 factors deleted, but subject to a slow-motion effect that causes playback speed to decay exponen-

tially. To express that notion, we define a new, slowing clock �̃� subject to �̃�(0) = 0 and 𝜕�̃� 𝜕𝑡⁄ = 𝑒−𝑏𝑡. That is, 

�̃� ≔ ∫ 𝑒−𝑏𝑠𝑑𝑠
𝑡

0

= {
(1 − 𝑒−𝑏𝑡) 𝑏⁄ if 𝑏 ≠ 0

𝑡 if 𝑏 = 0
. (53) 

The time-transformed variable is 

𝑍�̃� ≔ 𝑍𝑡 . 

Then 

𝑑𝑍�̃� = �̃�𝑑�̃� + √2�̃��̃�𝑑�̃��̃�, (54) 

where 𝑑�̃��̃� is another standard Wiener process. This SDE is a half squared Bessel process. 2�̃�𝑡 can be realized as 

 
37 I thank Goran Peskir for pointing out the connection to the squared Bessel. I halve the squared Bessel for beauty. 
38 This would not be the case if 𝑋𝑡  entered the diffusion coefficient of (48) with a power other than 1 2⁄ . 
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the sum of 2�̃� squared, standard independent Brownian motions, at least when 2�̃� is a positive integer. But we 

allow �̃� to be any real. 

The Kolmogorov forward equation corresponding to the simpler SDE (54) is: 

𝜕𝑢

𝜕�̃�
= −

𝜕

𝜕𝑍�̃�
(�̃�𝑢) +

𝜕2

𝜕𝑍�̃�
2 (𝑍�̃�𝑢). (55) 

Solutions for this diffusion equation can be transformed into ones for 𝑋𝑡 in the Feller/CIR diffusion by inverting 

(51), and then on to the “superexponential” diffusion via 𝑌𝑡 = 𝑋𝑡
−1 𝐵⁄ . 

B.3. Constructing solutions for the half squared Bessel 

The solutions for the half squared Bessel are constructed as follows. First define the standard gamma 

density function, 

𝑓Γ(𝑥; 𝛼) ≔
𝑒−𝑥𝑥𝛼−1

Γ(𝛼)
. 

When 𝛼 > 0, this gives rise to a proper probability distribution over (0,∞). In using it as the basis for solutions 

to Feller’s diffusion equation, we will extend the function beyond those domains—to 𝛼 ≤ 0 and to 𝑥 = 0. A re-

markable feature of 𝑓Γ is that derivatives and integrals with respect to the argument are differences and counta-

ble sums in the parameter. As for derivatives, 

𝜕

𝜕𝑥
𝑓Γ(𝑥; 𝛼) =

(𝛼 − 1)𝑒−𝑥𝑥𝛼−2 

Γ(𝛼)
−
𝑒−𝑥𝑥𝛼−1

Γ(𝛼)
= 𝑓Γ(𝑥; 𝛼 − 1) − 𝑓Γ(𝑥; 𝛼) = −∇𝑓Γ(𝑥; 𝛼), (56) 

where ∇ is the unit-interval backward difference operator with respect to the parameter. Meanwhile, repeated 

application of integration by parts to the integral definition of the cumulative gamma distribution function, 𝐹Γ, 

gives the identity 

𝐹Γ(𝑥; 𝛼) = ∑ 𝑓Γ(𝑥; 𝛼 + 𝑚 + 1)

∞

𝑚=0

 (57) 

when 𝛼 > 0. In fact, to extend to the domain of 𝐹Γ, we will take (57) to define the function for negative, non-inte-

ger 𝛼. (For 𝛼 = 0, we take the limiting value, which is 1. For negative integer 𝛼, the formula is indeterminate.) 

The next stepping-stone to solutions for Feller’s diffusion equation is an expression for the noncentral 

𝜒2 density: 

𝑓𝜒2(𝑥; 𝜆, 𝜈) ≔ ∑ 𝑓Γ(𝜆;𝑚 + 1)𝑓Γ(𝑥;𝑚 + 𝜈 + 1)

∞

𝑚=0

. (58) 

We restrict to 𝜆, 𝑥 > 0. If 𝜈 ≥ 0, all the terms in the sum are positive, and by (12), we have 

𝑓𝜒2(𝑥; 𝜆, 𝜈) < (∑ 𝑓Γ(𝜆;𝑚 + 1)

∞

𝑚=0

)(∑ 𝑓Γ(𝑥;𝑚 + 𝜈 + 1)

∞

𝑚=0

) = 𝐹Γ(𝜆; 0)𝐹Γ(𝑥; 𝜈) = 𝐹Γ(𝑥; 𝜈) < 1. 

Thus the sum in (58) is bounded above. If 𝜈 < 0, a finite number of early terms may be negative. But all terms for 

𝑚 ≥ |𝜈| will be positive, so the series converges. 

This formulation of the noncentral 𝜒2 function is unusual. Let 𝑘 be the familiar degrfees-of-freedom 
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index associated with the distribution; then the parameter 𝜈 used here equals 𝑘/2 − 1. If 𝑘 is a positive integer, 

and if 𝑥𝑖 are 𝑘 normal variates with variance 1 and means 𝜇𝑖  satisfying 𝜆 =
1

2
∑ 𝜇𝑖

2
𝑖 , then 𝑓𝜒2(𝑥; 𝜆, 𝜈) is the density 

of 
1

2
∑ 𝑥𝑖

2
𝑖 . The usual definition drops the factors of 1 2⁄ . 

The formulation (58) maps directly to a more familiar presentation of the noncentral 𝜒2 distribution, as 

a Poisson mixture of central 𝜒2 distributions. Within (58). 𝑓Γ(𝜆;𝑚 + 1) is the Poisson probability 𝑓𝑃(𝑚; 𝜆) while 

𝑓Γ(𝑥;𝑚 + 𝜈 + 1) is the density of 𝑥 when 2𝑥 has the conventional central 𝜒2 distribution with 𝑘 + 2𝑚 degrees of 

freedom. 

Alongside the noncentral 𝜒2, I define what I call the Feller density function: 

𝑓−𝜒2(𝑥; 𝜆, 𝜈) ≔ ∑ 𝑓Γ(𝜆;𝑚 − 𝜈 + 1)𝑓Γ(𝑥;𝑚 + 1)

∞

𝑚=0

, (59) 

again restricting to 𝜆, 𝑥 > 0. With this notation, it is natural to write 𝑓±𝜒2  to represent the noncentral 𝜒2 and 

Feller density functions as a pair. The two are connected by 

𝑓𝜒2(𝑥; 𝜆, 𝜈) = 𝑓−𝜒2(𝜆; 𝑥, −𝜈). (60) 

In fact, the two functions coincide when 𝜈 is an integer. The match is immediate when 𝜈 = 0. When 𝜈 is a 

negative integer, the first |𝜈| terms of (12) are 0. So then 

𝑓𝜒2(𝑥; 𝜆, 𝜈) = ∑ 𝑓Γ(𝜆;𝑚 + 1)𝑓Γ(𝑥;𝑚 + 𝜈 + 1)

∞

𝑚=−𝜈

 

= ∑ 𝑓Γ(𝜆;𝑚 − 𝜈 + 1)𝑓Γ(𝑥;𝑚 + 1)

∞

𝑚=0

 

= 𝑓−𝜒2(𝑥; 𝜆, 𝜈). 

And when 𝜈 is a positive integer, the first 𝜈 terms of (12) are 0, leading again to equality. 

A more common way of writing these density functions is 

𝑓±𝜒2(𝑥; 𝜆, 𝜈) = 𝑒
−𝜆−𝑥 (

𝑥

𝜆
)
𝜈 2⁄

𝐼±𝜈(2√𝜆𝑥)  

where 𝐼±𝜈 is the modified Bessel function of the first kind: 

𝐼±𝜈(𝑧) ≔ ∑
(𝑧 2⁄ )2𝑚±𝜈

Γ(𝑚 + 1)Γ(𝑚 ± 𝜈 + 1)

∞

𝑚=0

. 

The modified Bessel function of the second kind is 

𝐾𝜈(𝑧) ≔
𝜋

2 sin 𝜈𝜋
(𝐼−𝜈(𝑧) − 𝐼𝜈(𝑧)), 

which is known to go to 0 as 𝑧 → ∞. It follows that 𝑓𝜒2 − 𝑓−𝜒2 converges to 0 as 𝑥 → ∞. The two densities differ, 

rather, in their behavior as 𝑥 ↓ 0. 

Figure 4 in the main text plots 𝑓𝜒2  and 𝑓−𝜒2 for 𝜆 = 1 and 𝜈 = −3.0,−2.5,… ,+3.0. As noted, when 𝜈 is an 

integer, the two coincide. Otherwise, the two fork toward the left; in some of these cases 𝑓𝜒2  diverges to infinity. 

Notably, some of the plots exhibit features evidently inadmissible for a probability distribution: they take 
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negative values, or perhaps diverge rapidly enough to have infinite total integral. 

We use the densities 𝑓±𝜒2  to define diffusions that we will show satisfy the half squared Bessel process 

(54) and, after transformation, the Feller process (48). We construct the diffusions by expressing the inputs to 

𝑓±𝜒2  as functions of time and the primary parameters in (48): 

𝑥 ≔ 𝑍�̃� �̃�⁄  

𝜆 ≔ 𝑍0 �̃�⁄  

𝜈 ≔ �̃� − 1 

(61) 

Adjusting for the change in variables from 𝑍𝑡 to 𝑥, whose Jacobian is 1 𝑡⁄ , our two asserted fundamental solu-

tions to the squared Bessel diffusion equation are: 

𝑓±𝜒2
∗ (�̃��̃�; 𝑍0, �̃�, �̃�) ≔

1

�̃�
𝑓±𝜒2 (

𝑍�̃�
�̃�
;
𝑍0
�̃�
, 𝜈) (62) 

Incorporating the scale and time transformations (24), and the Jacobian thereof, namely 𝑒−𝑏𝑡 𝑎⁄ , the fun-

damental solutions for the Feller diffusion (25) are in (40). Algebraic manipulations confirm that 𝑓−𝜒2
∗  coincides 

with Feller’s (1951b, eq. 6.2) explicit solution for 𝜈 ≤ 0, except that Feller includes an erroneous extra factor of 

(2𝑏)𝜈. 

The transition densities for 𝑌𝑡 are in (41). Figure 15 shows how the Feller/CIR is connected to other 

common stochastic models through parameter restrictions and the power transform. (The figure uses the defini-

tion 𝛾 ≔ −1 𝐵⁄ .) The figure shows how any solution for the transition density under the Feller/CIR diffusion 

(48) is bequeathed to all the other diffusions via these links. 
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Figure 15. Relationships among univariate stochastic models 

Feller (1951b) 
𝑑𝑋𝑡 = (𝑏𝑋𝑡 + 𝑐)𝑑𝑡 + √2𝑎𝑋𝑡𝑑𝑊𝑡 

Superexponential 

𝑑𝑌𝑡 = 𝛾 ((𝑎(𝛾 − 1) + 𝑐)𝑌𝑡
1−1 𝛾⁄

+ 𝑏𝑌𝑡) 𝑑𝑡 + 𝛾√2𝑎𝑌𝑡𝑌𝑡
1−1 𝛾⁄

𝑑𝑊𝑡  

≡ (𝑠𝑌𝑡
1+𝐵 + 𝛿𝑌𝑡)𝑑𝑡 + 𝜎√𝑌𝑡  𝑌𝑡

1+𝐵𝑑𝑊𝑡 

𝑌𝑡 ≔ 𝑋𝑡
𝛾  

Cox-Ingersoll-Ross (1985) 
𝑑𝑋𝑡 = (𝑏𝑋𝑡 + 𝑐)𝑑𝑡 + √2𝑎𝑋𝑡𝑑𝑊𝑡 

𝑏 < 0, 𝑐 > 0  
reflecting at 𝑋𝑡 = 0 

Constant elasticity of variance 

𝑑𝑌𝑡 = 𝛿𝑌𝑡𝑑𝑡 + 𝜎√𝑌𝑡  𝑌𝑡
1+𝐵𝑑𝑊𝑡 

𝑠 = 0,  − 2 < 𝐵 ≤ 0  
absorbing at 𝑌𝑡 = 0 

Cox-Ross (1976) square root 
𝑑𝑋𝑡 = 𝑏𝑋𝑡𝑑𝑡 + √2𝑎𝑋𝑡𝑑𝑊𝑡 

𝑐 = 0  
absorbing at 𝑋𝑡 = 0 Geometric Brownian motion 

𝑑𝑌𝑡 = 𝛿𝑌𝑡𝑑𝑡 + 𝜎𝑌𝑡𝑑𝑊𝑡 

Squared Bessel 
𝑑𝑋𝑡 = 𝑐𝑑𝑡 + 2√𝑋𝑡𝑑𝑊𝑡 

𝑏 = 0, 𝑎 = 2  

Bessel 

𝑑𝑌𝑡 =
𝑐 − 1

2𝑌𝑡
𝑑𝑡 + 𝑑𝑊𝑡 

𝑌𝑡 ≔ 𝑋𝑡
1 2⁄   

Brownian motion bounded at 0 
𝑑𝑌𝑡 = 𝑑𝑊𝑡 

𝑐 = 1  

Ornstein-Uhlenbeck bounded at 0 
𝑑𝑌𝑡 = 𝛿𝑌𝑡𝑑𝑡 + 𝜎𝑑𝑊𝑡 

𝐵 = −2 (𝛾 = 1 2⁄ ),  𝛿 < 0 𝐵 = 0 (𝛾 → −∞)  

𝛿 = 0, 𝜎 = 1  

Half squared Bessel 

𝑑𝑌𝑡 =
𝑐

2
𝑑𝑡 + √2𝑌𝑡𝑑𝑊𝑡 

𝑌𝑡 ≔
1

2
𝑋𝑡 
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B.4. Confirming the solutions 

To confirm the asserted solutions, we need only consider the half squared Bessel subcase. Our task is to show 

the asserted solutions (62) indeed solve the forward diffusion equation (55). 

B.5. Recurrence relation 

Let 𝐿 be the lag operator with respect to the last parameter of any of the above densities and diffusions, with a 

step interval of 1. For example, (𝐿𝑓𝜒2)(𝑥; 𝜆, 𝜈) = 𝑓𝜒2(𝑥; 𝜆, 𝜈 − 1). Then the gamma density function obeys 

(𝑎𝐿−1𝑓Γ)(𝑥; 𝛼) = 𝑥𝑓Γ(𝑥; 𝛼). 

𝑓±𝜒2  inherit a form of this relation. For 𝑓𝜒2 , 

𝑥𝑓𝜒2(𝑥; 𝜆, 𝜈 − 1) = ∑ 𝑓Γ(𝜆;𝑚 + 1)𝑥𝑓Γ(𝑥;𝑚 + 𝜈)

∞

𝑚=0

 

= ∑ 𝑓Γ(𝜆;𝑚 + 1)(𝑚 + 𝜈)𝑓Γ(𝑥;𝑚 + 𝜈 + 1)

∞

𝑚=0

 

= ∑ 𝑚𝑓Γ(𝜆;𝑚 + 1)𝑓Γ(𝑥;𝑚 + 𝜈 + 1)

∞

𝑚=0

+ 𝜅 ∑ 𝑓Γ(𝜆;𝑚 + 1)𝑓Γ(𝑥;𝑚 + 𝜈 + 1)

∞

𝑚=0

 

= ∑ 𝑚𝑓Γ(𝜆;𝑚 + 1)𝑓Γ(𝑥;𝑚 + 𝜈 + 1)

∞

𝑚=1

+ 𝜈𝑓𝜒2(𝑥; 𝜆, 𝜈) 

= ∑(𝑚 + 1)𝑓Γ(𝜆;𝑚 + 2)𝑓Γ(𝑥;𝑚 + 𝜈 + 2)

∞

𝑚=0

+ 𝜈𝑓𝜒2(𝑥; 𝜆, 𝜈) 

= ∑ 𝜆𝑓Γ(𝜆;𝑚 + 1)𝑓Γ(𝑥;𝑚 + 𝜈 + 2)

∞

𝑚=0

+ 𝜈𝑓𝜒2(𝑥; 𝜆, 𝜈) 

= 𝜆𝑓𝜒2(𝑥; 𝜆, 𝜈 + 1) + 𝜈𝑓𝜒2(𝑥; 𝜆, 𝜈) 

Swapping the symbols 𝑥 and 𝜆 in the above, replacing 𝜈 with −𝜈, and applying (60) produces the same relation for 𝑓−𝜒2. 

To encapsulate, we write, 

𝜈𝑓± = [𝑥𝐿 − 𝜆𝐿
−1]𝑓±.  

By way of (40), the recurrence applies to the asserted Feller diffusion solutions as well: 

𝜈𝑓±
∗ = 𝜈

𝜕𝑥

𝜕𝑋𝑡
𝑓± =

𝜕𝑥

𝜕𝑋𝑡
[𝑥𝐿 − 𝜆𝐿−1]𝑓±

∗. (63) 

B.5.1 Cross-sectional derivative relation 

The derivative identity (56) for the gamma function transfers directly to 𝑓𝜒2  via linearity in (58): 

𝜕

𝜕𝑥
𝑓𝜒2(𝑥; 𝜆, 𝜈) = −∇𝑓𝜒2(𝑥; 𝜆, 𝜈). 

With more work, we get something similar with respect to 𝜆: 
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𝜕

𝜕𝜆
𝑓𝜒2(𝑥; 𝜆, 𝜈) = ∑(−∇)𝑓Γ(𝜆;𝑚 + 1)𝑓Γ(𝑥;𝑚 + 𝜈 + 1)

∞

𝑚=0

 

= ∑(𝑓Γ(𝜆;𝑚) − 𝑓Γ(𝜆;𝑚 + 1))𝑓Γ(𝑥;𝑚 + 𝜈 + 1)

∞

𝑚=0

 

= ∑ 𝑓Γ(𝜆;𝑚)𝑓Γ(𝑥;𝑚 + 𝜈 + 1)

∞

𝑚=0

− ∑ 𝑓Γ(𝜆;𝑚 + 1)𝑓Γ(𝑥;𝑚 + 𝜈 + 1)

∞

𝑚=0

 

= ∑ 𝑓Γ(𝜆;𝑚)𝑓Γ(𝑥;𝑚 + 𝜈 + 1)

∞

𝑚=1

− 𝑓𝜒2(𝑥; 𝜆, 𝜈) 

= ∑ 𝑓Γ(𝜆;𝑚 + 1)𝑓Γ(𝑥;𝑚 + 𝜈 + 2)

∞

𝑚=0

− 𝑓𝜒2(𝑥; 𝜆, 𝜈) 

= Δ𝑓𝜒2(𝑥; 𝜆, 𝜈), 

in which Δ is the one-unit forward difference operator with respect to 𝜈. Once more, applying (60) and replacing −𝜈 with 

𝜈 throughout produces the same identities for 𝑓−𝜒2. Thus we will write more compactly, 

𝜕

𝜕𝑥
𝑓± = −∇𝑓± 

𝜕

𝜕𝜆
𝑓± = Δ𝑓±. 

 

These relations too bootstrap to the asserted Feller diffusion solutions, including the half squared Bessel; the 

first bootstrapped relation we will use. Starting from (40), 

𝜕

𝜕𝑋𝑡
𝑓±
∗ =

𝜕

𝜕𝑋𝑡
(
𝜕𝑥

𝜕𝑋𝑡
𝑓±) 

=
𝜕𝑥

𝜕𝑋𝑡

𝜕𝑥

𝜕𝑋𝑡

𝜕

𝜕𝑥
𝑓± 

= −
𝜕𝑥

𝜕𝑋𝑡

𝜕𝑥

𝜕𝑋𝑡
∇𝑓± 

= −
𝜕𝑥

𝜕𝑋𝑡
∇𝑓±

∗. 

(64) 

B.5.2 Flux 

Note that 

𝑥 =
𝜕𝑥

𝜕𝑋𝑡
𝑋𝑡 =

𝑒−𝑏𝑡

𝑎�̃�
𝑋𝑡 =

𝑏𝑒−𝑏𝑡

𝑎(1 − 𝑒−𝑏𝑡)
𝑋𝑡 

𝜆 =
𝜕𝜆

𝜕𝑋0
𝑋0 =

1

𝑎�̃�
𝑋0 =

𝑏

𝑎(1 − 𝑒−𝑏𝑡)
𝑋𝑡 

𝜕𝜆

𝜕𝑋0
=
𝜕𝑥

𝜕𝑋𝑡
𝑒𝑏𝑡 =

𝜕𝑥

𝜕𝑋𝑡
+
𝑏

𝑎
 

Starting with the statement of the flux in (50), applying the recurrence relation (63), derivative rule (64), and then iden-

tities just above, the flux of the asserted solutions is 
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𝐽 = (𝑎𝜈 + 𝑏𝑋𝑡)𝑓±
∗ − 𝑎𝑋𝑡

𝜕

𝜕𝑋𝑡
𝑓±
∗ 

= 𝑎 [𝜈𝑓±
∗ +

𝑏

𝑎
𝑋𝑡𝑓±

∗ − 𝑋𝑡 (−
𝜕𝑥

𝜕𝑋𝑡
∇𝑓±

∗)] 

= 𝑎 [𝑥𝐿 − 𝜆𝐿−1 +
𝑏

𝑎
𝑋𝑡 +

𝜕𝑥

𝜕𝑋𝑡
𝑋𝑡∇]𝑓±

∗ 

= 𝑎 [
𝜕𝑥

𝜕𝑋𝑡
𝑋𝑡𝐿 −

𝜕𝑥

𝜕𝑋𝑡
𝑒𝑏𝑡𝑋0𝐿

−1 +
𝑏

𝑎
𝑋𝑡 +

𝜕𝑥

𝜕𝑋𝑡
𝑋𝑡 −

𝜕𝑥

𝜕𝑋𝑡
𝑋𝑡𝐿] 𝑓±

∗ 

= 𝑎 [−
𝜕𝑥

𝜕𝑋𝑡
𝑒𝑏𝑡𝑋0𝐿

−1 +
𝜕𝑥

𝜕𝑋𝑡
𝑋𝑡𝑒

𝑏𝑡] 𝑓±
∗ 

=
1

�̃�
[𝑋𝑡 − 𝑋0𝐿

−1]𝑓±
∗ 

 

(65) 

In the special case of the half squared Bessel, 𝑎 = 1 and 𝑏 = 0, so this simplifies to 

𝐽 =
1

𝑡
[𝑍𝑡 − 𝑍0𝐿

−1]𝑓±
∗. (66) 

B.5.3 Plugging into Feller’s diffusion equation 

At last, to confirm the asserted solutions, we check that for the half squared Bessel, they satisfy the requirement 

(49) that the spatial derivative of the flux is the negative of the time derivative of the density. The spatial derivative of 

the flux (66) is 

𝜕𝐽

𝜕𝑍𝑡
=
1

𝑡

𝜕

𝜕𝑍𝑡
[𝑍𝑡 − 𝑍0𝐿

−1]𝑓±
∗ 

=
1

𝑡
[1 + 𝑍𝑡

𝜕

𝜕𝑍𝑡
− 𝑍0𝐿

−1
𝜕

𝜕𝑍𝑡
]
1

𝑡
𝑓± 

=
1

𝑡
[1 + 𝑍𝑡 (−

1

𝑡
∇) − 𝑍0𝐿

−1 (−
1

𝑡
∇)]

1

𝑡
𝑓± 

=
1

𝑡2
[𝑡 − 𝑍𝑡∇ + 𝑍0𝐿

−1∇]𝑓±
∗ 

=
1

𝑡2
[𝑡 − (𝑍𝑡∇ − 𝑍0Δ)]𝑓±

∗. 

The time derivate of the density is 

𝜕𝑓±
∗

𝜕𝑡
=
𝜕

𝜕𝑡
(
1

𝑡
𝑓±(𝑥; 𝜆, 𝜈)) 

= [−
1

𝑡2
+
1

𝑡
 (
𝜕𝑥

𝜕𝑡

𝜕

𝜕𝑥
+
𝜕𝜆

𝜕𝑡

𝜕

𝜕𝜆
)] 𝑓± 

= −
1

𝑡2
[1 − 𝑡 (−

𝑍𝑡
𝑡2
(−∇) −

𝑍0
𝑡2
Δ)] 𝑓± 

= −
1

𝑡2
[𝑡 − (𝑍𝑡∇ − 𝑍0Δ)]𝑓±

∗, 

 

as desired. 
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B.6. Consistency with the initial condition 

Confirming that these diffusions satisfy the initial condition 𝑌𝑡|𝑡=0 = 𝑌0 is complicated by the change in the 

mathematical character of the diffusion in the instant after 𝑡 = 0. At 𝑡 = 0, the distribution is by assumption concen-

trated with infinite density at a single point; after, it is spread across all positive reals. This change in character manifests 

in the fact that the mapping (61) of 𝑍0, 𝑍𝑡 ↦ 𝜆, 𝑥 is not defined at 𝑡 = 0. So we must instead investigate the behavior of 

the diffusions in the limit as 𝑡 ↓ 0 (and thus 𝐶 → ∞). 

Starting with the noncentral 𝜒2 diffusion, 

lim
𝑡↓0

𝑓𝜒2
∗ (𝑍𝑡; 𝑍0, 𝑡, �̃�) = lim

𝑡↓0

1

𝑡
∑ 𝑓Γ (

�̃�0
𝑡
;𝑚 + 1)𝑓Γ (

𝑍𝑡
𝑡
;𝑚 + 𝜈 + 1)

∞

𝑚=0

 

= lim
𝑡↓0

∑
1

√𝑡
𝑓𝑃 (𝑚;

𝑍0
𝑡
)
1

√𝑡
𝑓𝑃 (𝑚 + 𝜈;

𝑍𝑡
𝑡
)

∞

𝑚=0

, 

where 𝑓𝑃(𝑧; 𝛽) is again the Poisson density function. 

In general, if 𝑧 ∼ 𝑓𝑃(⋅; 𝛽), then as 𝛽 → ∞, 𝑓𝑃(𝑧; 𝛽) becomes well approximated by the normal density with the 

same mean and variance as 𝑓𝑃, namely 𝛽 and 𝛽. (More precisely, 𝑧/√𝛽, which has density √𝛽𝑓P(𝑧; 𝛽), converges in distri-

bution to 𝒩(√𝛽, 1).) So, using 𝑓𝒩  to represent the normal density parameterized by mean and variance, we develop the 

above as 

= lim
𝑡↓0

∑
1

√𝑡
𝑓𝒩 (𝑚;

𝑍0
𝑡
,
𝑍0
𝑡
)
1

√𝑡
𝑓𝒩 (𝑚 + 𝜈;

𝑍𝑡
𝑡
,
𝑍𝑡
𝑡
)

∞

𝑚=0

 

= lim
𝑡↓0

∑ 𝑓𝒩 (𝑚√𝑡;
𝑍0

√𝑡
, 𝑍0)𝑓𝒩 (𝑚√𝑡;

𝑍𝑡

√𝑡
− 𝜈√𝑡, 𝑍𝑡)

∞

𝑚=0

 

= lim
𝑡↓0

1

√𝑡
∑ √𝑡𝑓𝒩 (𝑚√𝑡;

𝑍0

√𝑡
, 𝑍0)𝑓𝒩 (𝑚√𝑡;

𝑍𝑡

√𝑡
− 𝜈√𝑡, 𝑍𝑡)

∞

𝑚=0

. 

The limit of the sum is a Riemann integral of the pointwise product of two normal curves. So we have 

= lim
𝑡↓0

1

√𝑡
∫ 𝑓𝒩 (𝑚√𝑡;

𝑍0

√𝑡
, 𝑍0)𝑓𝒩 (𝑚√𝑡;

𝑍𝑡

√𝑡
− 𝜈√𝑡, 𝑍𝑡)𝑑𝑚

∞

0

  

As 𝑡 ↓ 0 the centers of the normal distributions go to +∞ even as their variances hold constant. So we may 

change the lower bound of the integral to −∞. Moreover, if 𝑍0 ≠ 𝑍𝑡, then the means of the two normal curves in the last 

version become more distant from each other even as the variances hold constant, driving the integral of their pointwise 

product to zero. Thus the limit works out to the Dirac delta function 𝛿�̃�0(𝑍𝑡), which is the initial condition. 

The same holds for 𝑓−𝜒2
∗ (𝑋𝑡; 𝑋0, 𝑡, 𝑎, 𝑏, 𝜈). 

B.7. Characteristics of the solutions 

Although the functions 𝑓±𝜒2
∗  indeed solve the Kolmogorov forward equation for the half squared Bessel process, 

they do not behave like proper diffusions for all parameter values. Sometimes, for example, they take negative values. 

Here we review such properties and their dependence on 𝜈. 
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B.7.1 Positivity 

When 𝛼 ≥ 0, 𝑓Γ(𝑥; 𝛼) never takes negative values over [0,∞). As a result, 𝑓±𝜒2
∗  are everywhere non-negative, i.e., 

positivity preserving, if their evaluation requires passing only non-negative parameter values to 𝑓Γ. In particular, exam-

ining the definitions (58), (59), and (40), we see that 𝑓𝜒2
∗  is positive preserving when 𝜈 ≥ −1, as is 𝑓−𝜒2

∗  when 𝜈 ≤ 1. 

Integer values for 𝜈 generate one class of exceptions to those generalizations—but not a very interesting one. 

Since 𝑓𝜒2
∗ = 𝑓−𝜒2

∗  for integer 𝜈, if one diffusion is positive—and one always is—then both are. 

Summary: 

𝑓𝜒2
∗  preserves positivity if 𝜈 ≥ −1 or 𝜈 is an integer 

𝑓−𝜒2
∗  preserves positivity if 𝜈 ≤ 1 or 𝜈 is an integer 

Note that we have not asserted that these diffusions fail to preserve positivity for all values of 𝜈 outside the indi-

cated sets. But that is largely moot because outside these sets, the diffusions are poorly behaved in other respects, as we 

will see. 

B.7.2 Density near zero 

The density of 𝑓𝜒2  in the 𝑥 ↓ 0 limit is 

lim
𝑥↓0

∑ 𝑓Γ(𝜆;𝑚 + 1)𝑓Γ(𝑥;𝑚 + 𝜈 + 1)

∞

𝑚=0

= ∑ 𝑓Γ(𝜆;𝑚 + 1) lim
𝑥↓0

𝑓Γ(𝑥;𝑚 + 𝜈 + 1)

∞

𝑚=0

 

= ∑ 𝑓Γ(𝜆;𝑚 + 1)
1

Γ(𝑚 + 𝜈 + 1)
lim
𝑥↓0

𝑥𝑚+𝜈
∞

𝑚=0

. 

 

If 𝜈 ∈ ℤ, 𝑓𝜒2  equals 𝑓−𝜒2, which we analyze just below. Otherwise, the Γ(⋅) denominator above is always 

bounded. As a result, 𝑓𝜒2  has a zero or pole at 0 of order |𝜈|: if 𝜈 > 0, the 𝑚 = 0 term converges to 0 as 𝑥𝜈, and later 

terms do so more rapidly; if 𝜈 is a negative non-integer, the same term diverges most rapidly, as 𝑥𝜈. In the latter case, the 

sign of that dominating divergent term is that of Γ(𝜈 + 1), namely (−1)⌈𝜈⌉, as seen in Figure 4. 

Under 𝑓−𝜒2, the density near 0 is finite for all 𝜈. For we have 

lim
𝑥↓0

𝑓−𝜒2 = ∑ 𝑓Γ(𝜆;𝑚 − 𝜈 + 1) lim
𝑥↓0

𝑓Γ(𝑥;𝑚 + 1)

∞

𝑚=0

; 

and observing that the limit in the right expression is 1 for 𝑚 = 0, and zero otherwise, leads to 

= 𝑓Γ(𝜆; 1 − 𝜈).  

This is non-negative for 𝜈 ≤ 1 and equals zero only when 𝜈 is a positive integer—features also visible in Figure 4. 

Shifting from distribution to the full Feller diffusion, under 𝑓−𝜒2
∗ , the density near the zero boundary at a given 

time is  

lim
𝑋𝑡↓0

𝑓−𝜒2
∗ =

𝑒−𝑏𝑡

𝑎�̃�
lim
𝑥↓0

𝑓−𝜒2 =
𝑒−𝑏𝑡

𝑎�̃�
𝑓Γ(𝜆; 1 − 𝜈) =

𝑒−𝑏𝑡

𝑎�̃�
𝑓Γ (

𝑍0
�̃�
; 1 − 𝜈) =

𝑒−𝑏𝑡

𝑎�̃�
𝑓Γ (

𝑋0
𝑎�̃�
; 1 − 𝜈) =

1 − 𝜈

𝑋0�̃�
𝑓Γ(𝜆; 2 − 𝜈),  

which is finite and non-zero except when 𝜈 is a positive integer, when the limit is 0. 

Summary: 
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lim
𝑥↓0

𝑓𝜒2 = {
0 if 𝜈 > 0

𝑓Γ(𝜆; 1 − 𝜈) if 𝜈 ∈ {0,−1,… }

±∞ otherwise
 

lim
𝑥↓0

𝑓−𝜒2 = 𝑓Γ(𝜆; 1 − 𝜈) 

(67) 

(The latter is zero if 𝜈 ∈ {0,−1,… }.) 

lim
𝑋𝑡↓0

𝑓𝜒2
∗ =

𝑒−𝑏𝑡

𝑎�̃�
⋅ {

0 if 𝜈 > 0
𝑓Γ(𝜆; 1 − 𝜈) if 𝜈 ∈ {0,−1,… }

±∞ otherwise
 

lim
𝑋𝑡↓0

𝑓−𝜒2
∗ =

𝑒−𝑏𝑡

𝑎�̃�
⋅ 𝑓Γ(𝜆; 1 − 𝜈) 

(68) 

B.7.3 Flux near 0 

By (65), the flux under the Feller diffusion solutions is 

𝐽 =
1

�̃�
[𝑋𝑡 − 𝑋0𝐿

−1]𝑓±
∗ =

1

�̃�
[𝑥 − 𝑒−𝑏𝑡𝜆𝐿−1]𝑓±. (69) 

We are interested in the 𝑋𝑡 ↓ 0 (𝑥 ↓ 0) limit. 

As noted in the previous subsection, under 𝑓+
∗, if 𝜈 ∉ ℤ, the density behaves as 𝑥 → 0 as (−1)⌈𝜈⌉𝑥𝜈. Thus, in both 

𝑥𝑓+ and −𝐿−1𝑓+ behave there as (−1)⌈𝜈⌉𝑥𝜈+1; and 𝐽 does as well. That in this limit the density and flux have the same 

sign implies that when mass is accumulating near 𝑋𝑡 = 0 with unbounded, positive density—when ⌈𝜈⌉ is even—it is ar-

riving there at least in part from below. For a positive flux indicates movement from smaller to larger 𝑋𝑡 coordinates. In 

other words, the singularity at 𝑋𝑡 = 0 is a source. The odd-⌈𝜈⌉ behavior is perhaps best interpreted in the same way: 

when negative mass is accumulating near 𝑋𝑡 = 0, the associated negative values for 𝐽 indicate movement of such nega-

tive mass up and out of the singularity. 

A singularity emitting mass, positive or negative, may be unrealistic in many modeling contexts. So we typically 

consider 𝜈 < −1 inadmissible for the 𝑓𝜒2
∗  diffusion; then 𝑥 = 0 is a zero rather than pole of the density. 

Turning to the 𝑓−𝜒2
∗  diffusion, now 𝑓− and 𝐿−1𝑓− in (69) are, by (67), bounded. As a result, we can compute the 

𝑋𝑡 ↓ 0 limit by plugging 𝑋𝑡 = 0 into (69)—or into another expression for the flux. Doing so in (50) yields 

lim
𝑋𝑡↓0

𝐽 = 𝑎𝜈𝑓−𝜒2
∗ (0; 𝑌0, 𝑡, 𝑎, 𝑏, 𝜈) = 𝑎𝜈

𝑒−𝑏𝑡

𝑎�̃�
𝑓Γ(𝜆; 1 − 𝜈) = −

𝑒−𝑏𝑡

�̃�
𝜆𝑓Γ(𝜆; −𝜈),  

the second equality using (68). The implications are akin to those for 𝑓𝜒2
∗  when 𝜈 < 0. Under 𝑓−𝜒2

∗ , if 𝜈 > 0, then the posi-

tive density near 𝑋𝑡 = 0 is arriving there, on net, from below: the singularity is again a source. If 𝜈 < 0 then the flux of 

𝑓−𝜒2
∗  near 𝑋𝑡 = 0 is negative, making the singularity a sink: mass reaching the boundary exits the system, if by system we 

mean the mass diffusing in the range (0,∞). 

Summary: 
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lim
𝑋𝑡↓0

𝐽 =

{
 
 

 
 

±∞ under 𝑓𝜒2
∗  if 𝜈 < −1, 𝜈 ∉ ℤ

0 under 𝑓𝜒2
∗  if 𝜈 > −1; or 𝑓−𝜒2

∗  with 𝜈 ∈ {0,1,… }

−
𝑒−𝑏𝑡

�̃�
𝜆𝑓Γ(𝜆; −𝜈) under 𝑓−𝜒2

∗ ; or 𝑓𝜒2
∗  with 𝜈 ∈ {−1,−2,… }

  

B.7.4 Norm 

The discovery that some diffusions satisfying Feller’s equation gain or lose mass at the boundary motivates in-

terest in the total mass away from the boundary. More precisely, we investigate 

‖𝑓±‖ ≔ lim
𝑥↓0

∫ 𝑓±𝑑𝑥
∞

𝑥

, (70) 

which we will call the norm of 𝑓±. The definition extends from distributions to diffusions in the obvious way, becoming 

time-dependent. When (positive) mass exits the system, the norm should decrease. 

Again focusing first on 𝑓𝜒2 , we have, by substituting (58) into (70), 

‖𝑓𝜒2‖ = lim
𝑥↓0

∫ 𝑓𝜒2(𝑥; 𝜆, 𝜈)𝑑𝑥
∞

𝑥

= ∑ 𝑓Γ(𝜆;𝑚 + 1) lim
𝑥↓0

∫ 𝑓Γ(𝑥;𝑚 + 𝜈 + 1)𝑑𝑥
∞

𝑥

∞

𝑚=0

. (71) 

If 𝜈 > −1, then for all 𝑚, 𝑚+ 𝜈 + 1 > 0 and 𝑓Γ(𝑥;𝑚 + 𝜈 + 1) is a proper gamma distribution, with total integral 1. Then 

the norm of 𝑓𝜒2  is an exhaustive sum of Poisson probabilities: 

= ∑ 𝑓Γ(𝜆;𝑚 + 1)1

∞

𝑚=0

= ∑ 𝑓𝑃(𝑚; 𝜆)

∞

𝑚=0

= 1. 

Thus for 𝜈 > −1, 𝑓𝜒2  as defined in (58) is a proper distribution over (0,∞). 

But if 𝜈 = −1, the norm of 𝑓𝜒2 falls below 1. In particular, segregating the 𝑚 = 0 term in (53), we now get 

‖𝑓𝜒2‖ = 𝑓Γ(𝜆; 1) lim
𝑥↓0

∫ 𝑓Γ(𝑥; 0)𝑑𝑥
∞

𝑥

+ ∑ 𝑓Γ(𝜆;𝑚 + 1)

∞

𝑚=1

. 

Since the integrand is identically 0, the whole first term is too. The second term is a non-exhaustive sum of Poisson prob-

abilities, ∑ 𝑓𝑃(𝑚; 𝜆)
∞
𝑚=1 = 1 − 𝑒−𝜆. Thus now ‖𝑓𝜒2‖ = 1 − 𝑒

−𝜆 = 𝐹Γ(𝜆; 1). 

More generally, if 𝜈 is a negative integer, 

‖𝑓𝜒2‖ = ∑ 𝑓Γ(𝜆;𝑚 + 1) lim
𝑥↓0

∫ 𝑓Γ(𝑥;𝑚 + 𝜈 + 1)𝑑𝑥
∞

𝑥

−𝜈−1

𝑚=0

+ ∑ 𝑓Γ(𝜆;𝑚 + 1)

∞

𝑚=−𝜈

 

The first sum is zero and the second is 

= ∑ 𝑓Γ(𝜆;𝑚 − 𝜈 + 1)

∞

𝑚=0

= 𝐹Γ(𝜆;−𝜈) 

using (57). 

If 𝜈 is not an integer yet less than −1, then the integrals in the early terms of (71) are unbounded, so that in gen-

eral the norm is too. In particular, the 𝑚 = 0 term dominates, and diverges with ∫ 𝑥𝜈𝑑𝑥 = 𝑥𝜈+1. This behavior is con-

sistent with the earlier finding that, under the same conditions, the singularity is an unbounded source of positive or 
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negative mass. 

𝑓−𝜒2 behaves differently in this regard. From the definition (59), we calculate 

‖𝑓−𝜒2‖ = ∑ 𝑓Γ(𝜆;𝑚 − 𝜈 + 1) lim
𝑥↓0

∫ 𝑓Γ(𝑥;𝑚 + 1)𝑑𝑥
∞

𝑥

∞

𝑚=0

= ∑ 𝑓Γ(𝜆;𝑚 − 𝜈 + 1)

∞

𝑚=0

. (72) 

When 𝜈 < 0, (57) equates this to 𝐹Γ(𝜆; −𝜈). When 𝜈 ≥ 0 is an integer, 𝑓−𝜒2 = 𝑓𝜒2, which we have already reviewed. Fi-

nally, when 𝜈 > 0 is not an integer, (72) decomposes as 

= ∑ 𝑓Γ(𝜆;𝑚 − 𝜈 + 1)

⌊𝜈⌋

𝑚=0

+ ∑ 𝑓Γ(𝜆;𝑚 − 𝜈 + 1)

∞

𝑚=⌈𝜈⌉

= ∑ 𝑓Γ(𝜆;𝑚 − 𝜈 + 1)

⌊𝜈⌋

𝑚=0

+ 𝐹Γ(𝜆; ⌈𝜈⌉ − 𝜈) 

This is finite given 𝜆 and 𝜈. But by choosing 𝑋0, thus 𝜆, close to zero, the dominant 𝑚 = 0 term can be made arbi-

trarily large, growing with 𝜆−𝜈. In general, the norm is unbounded. 

Summary: 

‖𝑓𝜒2
∗ ‖ = {

1 if 𝜈 > −1
𝐹Γ(𝜆; −𝜈) if 𝜈 ∈ {−1,−2,… }

±∞ otherwise
 

‖𝑓−𝜒2
∗ ‖ =

{
 
 

 
 

𝐹Γ(𝜆; −𝜈) if 𝜈 < 0

1 if 𝜈 ∈ {0, 1,… }

𝐹Γ(𝜆; ⌈𝜈⌉ − 𝜈) + ∑ 𝑓Γ(𝜆;𝑚 − 𝜈 + 1)

⌊𝜈⌋

𝑚=0

otherwise

 (73) 

According to (61), 𝜆 decreases monotonically with 𝑡; it converges to 𝑋0 𝑎⁄  when 𝑏 > 0 and to 0 otherwise. As 

result, in those cases where the norm is finite but less than 1, equaling 𝐹Γ(𝜆; −𝜈), the diffusion is also norm decreasing: 

‖𝑓±𝜒2
∗ ‖ declines toward 𝐹Γ(𝑋0 𝑎⁄ ;−𝜈) if 𝑏 < 0 and toward 0 otherwise. On the other hand, the final case of (73) passes 

negative arguments to 𝑓Γ(⋅). This can produce large values of sign (−1)⌈𝜈⌉; and the magnitudes rise—unboundedly so 

when 𝑏 ≤ 0 and thus 𝜆 → 0. 

B.8. Completing the statement of the solutions 

This review of the characteristics of 𝑓𝜒2  and 𝑓−𝜒2, 𝑓𝜒2
∗  and 𝑓−𝜒2

∗ , summarized in the table below, equips us to ad-

dress some unfinished business. We have found that 𝑓𝜒2
∗  possesses traits of a plausible physical or economic model—

positivity, a cross-sectional norm of 1—when 𝜈 > −1 or 𝜈 is an integer. Notably, the density defined for 𝑓𝜒2  does inte-

grate to 1 over (0,∞). In partial contrast, for 𝜈 ≤ 0, 𝑓−𝜒2
∗  is positive and possesses a cross-sectional norm in the range 

[0,1]—but not necessarily equal to 1. Definition (59) therefore does not constitute a proper distribution.  

How to fix this deficiency is now clear. Under the most meaningful parameter range, 𝜈 ≤ 0, the cross-sectional 

norm of 𝑓−𝜒2
∗  starts at 1 and then declines as 𝐹Γ(𝜆; −𝜈). Meanwhile, near 𝑋𝑡 = 0, the flux is negative: the singularity is a 

sink. So we know where the mass goes, and how much has gone at any given time. 

We therefore define 𝑓−𝜒2 more rigorously with a cumulative distribution function over [0,∞). It accumulates the 

mass at 𝑋𝑡 = 0, where sample paths enter a cemetery or coffin state. The full Feller distribution thus has a discrete and a 

continuous component: 
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𝐹−𝜒2(𝑥; 𝜆, 𝜈) = {

1 − 𝐹Γ(𝜆;−𝜈) if 𝑥 = 0

1 − 𝐹Γ(𝜆;−𝜈) + ∑ 𝑓Γ(𝜆;𝑚 − 𝜈 + 1)∫ 𝑓Γ(𝑥
′;𝑚 + 1)𝑑𝑥′

𝑥

0

∞

𝑚=0

if 𝑥 > 0
 (74) 

When 𝜈 is an integer, we transfer this definition to the noncentral 𝜒2 cdf, 𝐹𝜒2. The augmentations carry over to 𝑓𝜒2
∗  and 

𝑓−𝜒2
∗ . 

A special case is 𝜈 = −1, when 𝑓𝜒2  and 𝑓−𝜒2 both give the noncentral 𝜒2 distribution with 𝑘 = 2(𝜈 + 1) = 0 de-

grees of freedom. Under this distribution, the mass at the zero boundary is 1 − 𝐹Γ(𝜆; 1) = 𝑒
−𝜆 (Siegel 1979; Hjort 1988). 

By the definition of 𝜆 in (61), as 𝑡 → ∞, 𝜆 ↓ 𝑏 when 𝑏 > 0; otherwise, 𝜆 ↓ 0. As a result, if 𝑏 ≤ 0, essentially all of 

the mass eventually enters the singularity. But if 𝑏 > 0, the levitating component of exponential growth, deriving from 

the 𝑏𝑋𝑡𝑑𝑡 term in (48), rescues 𝐹Γ(𝑏;−𝜈) of the mass from this fate. 

Characteristics of noncentral 𝝌𝟐 and Feller diffusions, 𝒇±
∗  

 𝜈 < −1  𝜈 = −1  −1 < 𝜈 < 0  𝜈 = 0  0 < 𝜈 < 1  1 ≤ 𝜈 

 𝑓𝜒2
∗ , 𝜈

∉ ℤ 
𝑓−𝜒2
∗  

 
𝑓𝜒2
∗ = 𝑓−𝜒2

∗  
 
𝑓𝜒2
∗  𝑓−𝜒2

∗  
 
𝑓𝜒2
∗ = 𝑓−𝜒2

∗  
 
𝑓𝜒2
∗  𝑓−𝜒2

∗  
 
𝑓𝜒2
∗  𝑓−𝜒2

∗ , 𝜈 ∉ ℤ 

Positivity pre-

serving? 
N Y 

 
Y 

 
Y Y 

 
Y 

 
Y Y 

 
Y N 

Density near 0 ±∞ (0,∞)  (0,∞)  ∞ (0,∞)  (0,∞)  0 (0,∞)  0 (−∞,∞) 

Flux near 0 ±∞ (−∞, 0)  (−∞, 0)  0 (−∞, 0)  0  0 (0,∞)  0 (−∞,∞) 

Norm ±∞ 
< 1, decreas-

ing 

 
< 1, decreas-

ing 

 

1 
< 1, de-
creasing 

 

1 

 

1 

> 1, in-
creasing, 

unbounded 
if 𝑏 ≤ 0 

 

1 

±, increasing 
magnitude, 

unbounded if 
𝑏 ≤ 0 

B.9. Further characteristics of the solutions 

B.9.1 Time to zero 

By (74), under the Feller diffusion, the fraction of paths that go 0 by time 𝑡 is 

𝑞 = 1 − 𝐹Γ(𝜆;−𝜈) = 1 − 𝐹Γ (
𝑋0
𝑎�̃�
; 1 − �̃�) 

This is also the fraction of paths 𝑋𝑡
𝛾

, with 𝛾 < 0, that have exploded. Solving for �̃�, 

�̃� =
𝑋0

𝑎𝐹Γ
−1(1 − 𝑞; 1 − �̃�)

 

Inverting the definition of �̃� in  (39), 

𝑡 = {−
1

𝑏
ln(1 − 𝑏�̃�)  if 𝑏 ≠ 0

�̃� if 𝑏 = 0

. 

Combining the above gives the time when a fraction 𝑞 of the Feller-diffusion paths have gone to 0 or (negative powers 

thereof have exploded): 

𝑡 =

{
 
 

 
 −

1

𝑏
ln(1 −

𝑏𝑋0
𝑎𝐹Γ

−1(1 − 𝑞;−𝜈)
)  if 𝑏 ≠ 0

𝑋0

𝑎𝐹Γ
−1(1 − 𝑞;−𝜈)

if 𝑏 = 0
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For example, if 𝑞 = 0.5, this is the median hitting time of 𝑋𝑡 at zero, as well as the median explosion time of 𝑋𝑡
𝛾

. 

B.9.2 Moments 

Moments of 𝑥 

The 𝑟𝑡ℎ raw moment of the standard gamma density is 

∫ 𝑥𝑟𝑓Γ(𝑥; 𝛼)𝑑𝑥
∞

0

= ∫ 𝑥𝑟
𝑥𝛼−1

Γ(𝛼)
𝑒−𝑥𝑑𝑥

∞

0

=
Γ(𝑟 + 𝛼)

Γ(𝛼)
∫

𝑥𝑟+𝛼−1

Γ(𝑟 + 𝛼)
𝑒−𝑥𝑑𝑥

∞

0

 

If 𝑟 + 𝛼 > 0 the integral is 1, and the raw moment is 

Γ(𝑟 + 𝛼)

Γ(𝛼)
. 

Otherwise the integral and the moment are infinite. 

It follows that the 𝑟𝑡ℎ raw moment of the noncentral 𝜒2 density is 

∫ 𝑥𝑟𝑓χ2(𝑥; 𝜆, 𝜈)𝑑𝑥
∞

0

= ∫ ∑ 𝑓Γ(𝜆;𝑚 + 1)𝑥𝑟𝑓Γ(𝑥;𝑚 + 𝜈 + 1)

∞

𝑚=0

𝑑𝑥
∞

0

 

= ∑ 𝑓Γ(𝜆;𝑚 + 1)∫ 𝑥𝑟𝑓Γ(𝑥;𝑚 + 𝜈 + 1)𝑑𝑥
∞

0

∞

𝑚=0

 

= ∑ 𝑓Γ(𝜆;𝑚 + 1)
Γ(𝑟 +𝑚 + 𝜈 + 1)

Γ(𝑚 + 𝜈 + 1)

∞

𝑚=0

. 

This holds if 𝜈 + 𝑟 + 1 > 0. Otherwise the moment is infinite. 

In particular, if 𝜈 > −2, the mean of the density 𝑓𝜒2(𝑥; 𝜆, 𝜈) is 

E𝑥[𝑓𝜒2] = ∑ 𝑓Γ(𝜆;𝑚 + 1)
Γ(𝑚 + 𝜈 + 2)

Γ(𝑚 + 𝜈 + 1)

∞

𝑚=0

= ∑ 𝑓Γ(𝜆;𝑚 + 1)(𝑚 + 𝜈 + 1)

∞

𝑚=0

 

= ∑ 𝑓Γ(𝜆;𝑚 + 1)𝑚

∞

𝑚=0

+ (1 + 𝜈) ∑ 𝑓Γ(𝜆;𝑚 + 1)

∞

𝑚=0

 

= ∑ 𝑓𝑃(𝑚; 𝜆)𝑚

∞

𝑚=0

+ (1 + 𝜈) ∑ 𝑓Γ(𝑚; 𝜆)

∞

𝑚=0

 

The first sum in the last expression is the 1st moment of the Poisson distribution, which is 𝜆, while the second is 

the 0th moment, which is 1. Thus the mean of the noncentral 𝜒2 density is 𝜆 + 𝜈 + 1. 

Similarly, if 𝜈 > −3, the 2nd raw moment of 𝑓𝜒2  is 

E𝑥2[𝑓𝜒2] = ∑ 𝑓Γ(𝜆;𝑚 + 1)
Γ(𝑚 + 𝜈 + 3)

Γ(𝑚 + 𝜈 + 1)

∞

𝑚=0

 

= ∑ 𝑓𝑃(𝑚; 𝜆)(𝑚 + 𝜈 + 1)(𝑚 + 𝜅 + 2)

∞

𝑚=0

 

= ∑ 𝑓𝑃(𝑚; 𝜆)𝑚
2

∞

𝑚=0

+ (𝜈 + 2 + 𝜈 + 1 ) ∑ 𝑓𝑃(𝑚; 𝜆)𝑚

∞

𝑚=0

+ (𝜈 + 2 )(𝜈 + 1) ∑ 𝑓𝑃(𝑚; 𝜆)

∞

𝑚=0

 

The second raw moment of the Poisson distribution is 𝜆2 + 𝜆 (so that the variance is 𝜆). The above is then 
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= 𝜆2 + 𝜆 + (2𝜈 + 3 )𝜆 + (𝜈 + 2 )(𝜈 + 1) 

= (𝜆 + 𝜈 + 1)2 + 2𝜆 + 𝜈 + 1 

Subtracting the square of the mean from this raw 2nd moment gives the variance of the density: 

Var[𝑓𝜒2] = (𝜆 + 𝜈 + 1)
2 + 2𝜆 + 𝜈 + 1 − (𝜆 + 𝜈 + 1)2 = 2𝜆 + 𝜈 + 1. 

Again, this is the variance of the full distribution if 𝜈 > −1. 

As for 𝑓−𝜒2 (which includes the case of 𝑓𝜒2  when 𝜈 = −1), the 𝑟𝑡ℎ raw moment is 

E𝑥𝑟[𝑓−𝜒2] = ∑ 𝑓Γ(𝜆;𝑚 − 𝜈 + 1)
Γ(𝑟 + 𝑚 + 1)

Γ(𝑚 + 1)

∞

𝑚=0

 

For 𝑟 = 1, we develop this as 

= ∑ 𝑓Γ(𝜆;𝑚 − 𝜈 + 1)(𝑚 − 𝜈)

∞

𝑚=0

+ ∑ 𝑓Γ(𝜆;𝑚 − 𝜈 + 1)(𝜈 + 1)

∞

𝑚=0

 (75) 

We apply (57) to the second sum. And via the identity, 

𝛼𝑓Γ(𝑧; 𝛼 + 1) = 𝑧𝑓Γ(𝑧; 𝛼), (76) 

we rewrite the first sum in (75) as 

∑ 𝑓Γ(𝜆;𝑚 − 𝜈 + 1)(𝑚 − 𝜈)

∞

𝑚=0

= ∑ 𝜆𝑓Γ(𝜆;𝑚 − 𝜈)

∞

𝑚=0

 

= 𝜆𝑓Γ(𝜆; −𝜈) + 𝜆 ∑ 𝑓Γ(𝜆;𝑚 − 𝜈)

∞

𝑚=1

 

= 𝜆𝑓Γ(𝜆; −𝜈) + 𝜆 ∑ 𝑓Γ(𝜆;𝑚 − 𝜈 + 1)

∞

𝑚=0

 

= 𝜆𝑓Γ(𝜆; −𝜈) + 𝜆𝐹Γ(𝜆; −𝜈). 

(77) 

The development of E𝑥[𝑓−𝜒2] continues with 

= (𝜈 + 1)𝐹Γ(𝜆; −𝜈) + 𝜆𝑓Γ(𝜆; −𝜈) + 𝜆𝐹Γ(𝜆; −𝜈) 

= 𝜆𝑓Γ(𝜆; −𝜈) + (𝜆 + 𝜈 + 1)𝐹Γ(𝜆; −𝜈). 
(78) 

This computation neglects the probability mass at 0. But the result is correct because the mass at 0 contributes 0 

to the raw moment. 

In the same vein, the 2nd raw moment of 𝑓−𝜒2 is 

E𝑥2[𝑓−𝜒2] = ∑ 𝑓Γ(𝜆;𝑚 − 𝜈 + 1)
Γ(𝑚 + 3)

Γ(𝑚 + 1)

∞

𝑚=0

= ∑ 𝑓Γ(𝜆;𝑚 − 𝜈 + 1)(𝑚 + 2)(𝑚 + 1)

∞

𝑚=0

 (79) 

A step in (75) was to recast (𝑚 + 1) as (𝑚 − 𝜈) + (𝜈 + 1); the second-degree equivalent is 

(𝑚 + 1)(𝑚 + 2) = (𝑚 − 𝜈)(𝑚 − 𝜈 − 1) + 2(𝜈 + 2)(𝑚 − 𝜈) + (𝜈 + 1)(𝜈 + 2). (80) 

Now, 
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∑ 𝑓Γ(𝜆;𝑚 − 𝜈 + 1)(𝑚 − 𝜈)(𝑚 − 𝜈 − 1)

∞

𝑚=0

= 𝜆 ∑ 𝑓Γ(𝜆;𝑚 − 𝜈)(𝑚 − 𝜈 − 1)

∞

𝑚=0

 

= 𝜆2 ∑ 𝑓Γ(𝜆;𝑚 − 𝜈 − 1)

∞

𝑚=0

 

= 𝜆2𝑓Γ(𝜆; −𝜈 − 1) + 𝜆
2𝑓Γ(𝜆; −𝜈) + 𝜆

2 ∑ 𝑓Γ(𝜆;𝑚 − 𝜈 + 1)

∞

𝑚=0

 

= 𝜆(−𝜈 − 1)𝑓Γ(𝜆;−𝜈) + 𝜆
2𝑓Γ(𝜆; −𝜈) + 𝜆

2𝐹Γ(𝜆; −𝜈) 

= 𝜆(𝜆 − 𝜈 − 1)𝑓Γ(𝜆; −𝜈) + 𝜆
2𝐹Γ(𝜆; −𝜈). 

Substituting with this formula as well as (77) and (80) into (79), the 2nd raw moment is 

= ∑ 𝑓Γ(𝜆;𝑚 − 𝜈 + 1)(𝑚 − 𝜈)(𝑚 − 𝜈 − 1)

∞

𝑚=0

+ 2(𝜈 + 2) ∑ 𝑓Γ(𝜆;𝑚 − 𝜈 + 1)(𝑚 − 𝜈)

∞

𝑚=0

+ (𝜈 + 1)(𝜈 + 2) ∑ 𝑓Γ(𝜆;𝑚 − 𝜈 + 1)

∞

𝑚=0

 

= 𝜆(𝜆 − 𝜈 − 1)𝑓Γ(𝜆; −𝜈) + 𝜆
2𝐹Γ(𝜆; −𝜈) + 2(𝜈 + 2)(𝜆𝑓Γ(𝜆; −𝜈) + 𝜆𝐹Γ(𝜆; −𝜈)) + (𝜈 + 1)(𝜈 + 2)𝐹Γ(𝜆; −𝜈) 

= 𝜆(𝜆 + 𝜈 + 3)𝑓Γ(𝜆; −𝜈) + (𝜆 + (𝜆 + 𝜈 + 1)(𝜆 + 𝜈 + 2))𝐹Γ(𝜆; −𝜈) 

Subtracting the square of the mean, in (78), then gives the full expression for the variance of the Feller distribution: 

Var[𝑓−𝜒2] = 𝜆(𝜆 + 𝜈 + 3)𝑓Γ(𝜆;−𝜈) + (𝜆 + (𝜆 + 𝜈 + 1)(𝜆 + 𝜈 + 2))𝐹Γ(𝜆; −𝜈) − [𝜆𝑓Γ(𝜆;−𝜈) + (𝜆 + 𝜈 + 1)𝐹Γ(𝜆; −𝜈)]
2 

To obtain cross-sectional means and variances of the diffusions, we divide corresponding formulas for the distri-

butions by 𝑑𝑥 𝑑𝑋𝑡⁄ = 𝑒−𝑏𝑡 𝑎�̃�⁄  and its square, respectively, in order to pull back through 𝑋𝑡 ↦ 𝑥 in (39) for fixed 𝑡. 

Summary, after additional rearrangements: 

E𝑥[𝑓𝜒2] = 𝜆 + 𝜈 + 1 

Var𝑥[𝑓𝜒2] = 2𝜆 + 𝜈 + 1 

E𝑥[𝑓−𝜒2] = 𝜆𝑓Γ(𝜆;−𝜈) + (𝜆 + 𝜈 + 1)𝐹Γ(𝜆; −𝜈) = 𝜆𝐹Γ(𝜆;−𝜈 − 1) + (𝜈 + 1)𝐹Γ(𝜆; −𝜈) 

Var𝑥[𝑓𝜒2] = 𝜆(𝜆 + 𝜈 + 3)𝑓Γ(𝜆; −𝜈) + (𝜆 + (𝜆 + 𝜈 + 1)(𝜆 + 𝜈 + 2))𝐹Γ(𝜆;−𝜈) − [𝜆𝑓Γ(𝜆; −𝜈) + (𝜆 + 𝜈 + 1)𝐹Γ(𝜆; −𝜈)]
2 

E𝑋𝑡 [𝑓±𝜒2
∗ ] =

𝑎�̃�

𝑒−𝑏𝑡
E𝑥[𝑓±𝜒2] 

Var𝑋𝑡 [𝑓𝜒2
∗ ] = (

𝑎�̃�

𝑒−𝑏𝑡
)

2

Var[𝑓𝜒2] 

Moreover, since the excess kurtosis of 𝑓Γ(⋅; 𝛼) is 6 𝛼⁄ , when 𝑓±𝜒2  are valid distributions, they inherit the leptokurticity 

via the definitions (58) and (59). 

Moments of ln 𝑥 

If 𝑥 is gamma-distributed, the 𝑟𝑡ℎ raw moment of its log is 

E(ln𝑥)𝑟[𝑓Γ] = ∫ (ln 𝑥)𝑟𝑓Γ(𝑥; 𝛼)𝑑𝑥
∞

0

 

= ∫ (ln 𝑥)𝑟
𝑥𝛼−1

Γ(𝛼)
𝑒−𝑥𝑑𝑥

∞

0
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=
1

Γ(𝛼)
∫

𝜕𝑟

𝜕𝑡𝑟
𝑥𝛼−1+𝑡|

𝑡=0
𝑒−𝑥𝑑𝑥

∞

0

 

=
1

Γ(𝛼)

𝜕𝑟

𝜕𝑡𝑟
∫ 𝑥𝛼−1+𝑡𝑒−𝑥𝑑𝑥
∞

0

|
𝑡=0

 

=
1

Γ(𝛼)

𝜕𝑟

𝜕𝑡𝑟
Γ(𝛼 + 𝑡)|

𝑡=0
 

=
1

Γ(𝛼)

𝜕𝑟

𝜕𝛼𝑟
Γ(𝛼) 

To compute the derivates 
𝜕𝑟

𝜕𝛼𝑟
Γ(𝛼), we use Pascal’s Triangle–type identities for the derivatives of a function in 

terms of the derivatives of its log—which here are the digamma function 𝜓 and the higher polygamma functions 

𝜓1, 𝜓2, …. 

Γ′ = Γ𝜓 

Γ′′ = Γ′𝜓 + Γ𝜓1 

= Γ ⋅ (𝜓2 + 𝜓1) 

Γ′′′ = Γ′′𝜓 + 2Γ′𝜓1 + Γ𝜓2 

= (Γ𝜓2 + Γ𝜓1)𝜓 + 2Γ𝜓𝜓1 + Γ𝜓2 

= Γ ⋅ (𝜓3 + 3𝜓𝜓1 + 𝜓2) 

Γ′′′′ = Γ′′′𝜓 + 3Γ′′𝜓1 + 3Γ
′𝜓2 + Γ𝜓3 

= Γ ⋅ ((𝜓3 + 3𝜓𝜓1 + 𝜓2)𝜓 + 3(𝜓
2 +𝜓1)𝜓1 + 3𝜓𝜓2 + 𝜓3) 

= Γ ⋅ (𝜓4 + 3𝜓2𝜓1 +𝜓𝜓2 + 3(𝜓
2𝜓1 + 𝜓1

2) + 3𝜓𝜓2 +𝜓3) 

= Γ ⋅ (𝜓4 + 6𝜓2𝜓1 + 4𝜓𝜓2 + 3𝜓1
2 + 𝜓3) 

We get 

Eln𝑥[𝑓Γ] =
1

Γ(𝛼)

𝜕

𝜕𝛼
Γ(𝛼) = 𝜓(𝛼) 

E(ln𝑥)2[𝑓Γ] =
1

Γ(𝛼)

𝜕2

𝜕𝛼2
Γ(𝛼) = 𝜓(𝛼)2 + 𝜓1(𝛼) 

Varln 𝑥[𝑓Γ] = E(ln𝑥)2[𝑓Γ] − (Eln𝑥[𝑓Γ])
2 = 𝜓1(𝛼) 

The fourth central moment is 

E(ln𝑥−Eln𝑥[𝑓Γ])4[𝑓Γ] = E(ln𝑥)4[𝑓Γ] − 4E(ln𝑥)3[𝑓Γ] Eln𝑥[𝑓Γ] + 6E(ln𝑥)2[𝑓Γ] Eln𝑥[𝑓Γ]
2 − 4Eln𝑥[𝑓Γ] Eln𝑥[𝑓Γ]

3 + Eln𝑥[𝑓Γ]
4 

= 𝜓4 + 6𝜓2𝜓1 + 4𝜓𝜓2 + 3𝜓1
2 +𝜓3 − 4𝜓(𝜓

3 + 3𝜓𝜓1 + 𝜓2) + 6𝜓
2(𝜓2 + 𝜓1) − 3𝜓

4 

= 3𝜓1
2 + 𝜓3 

So the excess kurtosis of ln 𝑥 under the standard gamma distribution is 

E(ln𝑥−Eln𝑥[𝑓Γ])4[𝑓Γ]

(Varln𝑥[𝑓Γ])2
− 3 =

3𝜓1
2(𝛼) + 𝜓3(𝛼)

𝜓1
2(𝛼)

− 3 =
𝜓3(𝛼)

𝜓1
2(𝛼)

> 0 

If 𝜈 ≥ −1, so that 𝑓±𝜒2(𝑥; 𝜆, 𝜈) is a valid distribution, then the leptokurticity of ln 𝑥 is also bequeathed to 𝑓𝜒2. 

Under 𝑓−𝜒2, ln 𝑥 has infinite kurtosis on the low side because of the non-zero mass at 𝑥 = 0. These properties transfer in 

the now-familiar way to 𝑋𝑡 and 𝑋𝑡
𝛾

. 

 


